Advertisement

Characterization of cell-derived microparticles in synovial fluid and plasma of patients with rheumatoid arthritis

  • Benita Nancy Reni Michael
  • Vallayyachari Kommoju
  • Chengappa Kavadichanda Ganapathy
  • Vir Singh NegiEmail author
Observational Research
  • 46 Downloads

Abstract

Microparticles (MP) are proposed to play a role in the pathogenesis of rheumatoid arthritis (RA). This study aimed to profile cell lineage-specific MP in patients with RA, osteoarthritis (OA), and healthy controls (HC) in synovial fluid and circulation. Patients with RA (n = 40), OA (n = 30) and HC (n = 33) were included. Cell-free synovial fluid (SF) and platelet-poor plasma samples were stained with annexin V APC and antibodies against CD45, CD20, CD14, CD4, CD8, CD66b, and CD61 for multicolor flow cytometry. Mann–Whitney U test/unpaired T test was used to assess intergroup differences among RA and OA SF and clinical, serological phenotypes of RA based on normality distribution; Kruskal–Wallis test with Dunn’s multiple comparisons for comparing plasma MPs among RA, OA, and HC. Correlation between MP proportions and disease parameters was assessed by Spearman’s correlation. The proportion of annexin V+ MP in SF of patients with RA [5 (6.35)] [median (IQR)] was higher compared to OA [1.8 (1.35), p < 0.001] and plasma of patients with RA [3.45 (5.63)] compared to OA [1.85 (1.4)] and HC [0.9 (1.1), p < 0.001]. Leukocyte-derived [0.85 (1.17)], granulocyte-derived [0.4 (2.05)], monocyte-derived [0.4 (0.4)], and T cell-derived MP [CD4+ – 0.1 (0.1); CD8+ − 0.1(0.1)] were higher in RA SF (p < 0.001). Platelet-derived MP (PMP) were the major fraction [1.5 (4.23), p < 0.001] in RA plasma. Leukocyte-derived MP were higher in RA plasma [0.1 (0.2); p < 0.001) than OA and HC. Annexin V+ MP and PMP were higher in the SF of RA with extra-articular manifestations (n = 15), as compared to those without (n = 25) (p = 0.02; p < 0.01, respectively). High SF granulocyte-derived MP were observed in patients with established RA (n = 24), ACPA-positive RA (n = 32) compared to their negative counterparts (p = 0.03; p = 0.02, respectively). Our observations of higher proportions of cell-derived MP in the plasma and synovial fluid of DMARD-naïve RA patients, their clinical and serological phenotypes suggest their role in dynamic cross talk between the joint and systemic circulation, disease pathology, and progression.

Keywords

Rheumatoid arthritis Osteoarthritis Microparticles Synovial fluid Plasma Flow cytometry Autoimmunity 

Notes

Author contributions

VSN, BNRM, CKG, and KV contributed to the conception and design, acquisition of data, analysis, and interpretation of the data and final approval of the version to be published. BNRM and KV drafted the article. VSN critically revised the article for important intellectual content. VSN, BNRM, CKG, and KV agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Funding

The work was supported by Indian Council of Medical Research (ICMR), India (IRIS ID No.: 2012-2279) and JIPMER Intramural Research Fund (JIP/Res/Intra-PhD/01/2014 and JIP/Res/Intra-PhD/02/2015-16).

Compliance with ethical standards

Conflict of interest

Ms. Benita NR Michael, Mr. Vallayyachari Kommoju, Dr. Chengappa Kavadichanda Ganapathy, and Dr. Vir Singh Negi declare that they have no conflict of interest.

Ethical approval

The study was approved by the JIPMER institute ethics committee and conducted the following Principles of the Declaration of Helsinki (1964) and its later amendments or comparable ethical standards. Protocol No. JIP/IEC/2013/1/107 dated 15.03.2013.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

296_2019_4337_MOESM1_ESM.docx (1.4 mb)
Supplementary material 1 (DOCX 1411 kb)
296_2019_4337_MOESM2_ESM.docx (36 kb)
Supplementary material 2 (DOCX 36 kb)
296_2019_4337_MOESM3_ESM.docx (34 kb)
Supplementary material 3 (DOCX 33 kb)

References

  1. 1.
    Smolen JS, Aletaha D, McInnes IB (2016) Rheumatoid arthritis. Lancet 388:2023–2038.  https://doi.org/10.1016/S0140-6736(16)30173-8 CrossRefGoogle Scholar
  2. 2.
    Beyer C, Pisetsky DS (2010) The role of microparticles in the pathogenesis of rheumatic diseases. Nat Rev Rheumatol 6:21–29.  https://doi.org/10.1038/nrrheum.2009.229 CrossRefGoogle Scholar
  3. 3.
    Pisetsky DS, Ullal AJ, Gauley J, Ning TC (2012) Microparticles as mediators and biomarkers of rheumatic disease. Rheumatol (United Kingdom) 51:1737–1746.  https://doi.org/10.1093/rheumatology/kes028 Google Scholar
  4. 4.
    Willms A, Müller C, Julich H et al (2014) Tumour-associated circulating microparticles: A novel liquid biopsy tool for screening and therapy monitoring of colorectal carcinoma and other epithelial neoplasia. Oncotarget 7:30867–30875.  https://doi.org/10.18632/oncotarget.9018 Google Scholar
  5. 5.
    Buzas EI, György B, Nagy G et al (2014) Emerging role of extracellular vesicles in inflammatory diseases. Nat Rev Rheumatol 10:356–364.  https://doi.org/10.1038/nrrheum.2014.19 CrossRefGoogle Scholar
  6. 6.
    Withrow J, Murphy C, Liu Y et al (2016) Extracellular vesicles in the pathogenesis of rheumatoid arthritis and osteoarthritis. Arthritis Res Ther 18:1–12.  https://doi.org/10.1186/s13075-016-1178-8 CrossRefGoogle Scholar
  7. 7.
    Horstman LL, Jy W, Jimenez JJ et al (2004) New horizons in the analysis of circulating cell-derived microparticles. Keio J Med 53:210–230CrossRefGoogle Scholar
  8. 8.
    Sellam J, Proulle V, Jüngel A et al (2009) Increased levels of circulating microparticles in primary Sjögren’s syndrome, systemic lupus erythematosus and rheumatoid arthritis and relation with disease activity. Arthritis Res Ther 11:R156.  https://doi.org/10.1186/ar2833 CrossRefGoogle Scholar
  9. 9.
    Pereira J, Alfaro G, Goycoolea M et al (2006) Circulating platelet-derived microparticles in systemic lupus erythematosus. Association with increased thrombin generation and procoagulant state. Thromb Haemost 95:94–99CrossRefGoogle Scholar
  10. 10.
    Niccolai E, Squatrito D, Emmi G et al (2015) A new cytofluorimetric approach to evaluate the circulating microparticles in subjects with antiphospholipid antibodies. Thromb Res 136:1252–1258.  https://doi.org/10.1016/j.thromres.2015.10.018 CrossRefGoogle Scholar
  11. 11.
    Knijff-Dutmer EAJ, Koerts J, Nieuwland R et al (2002) Elevated levels of platelet microparticles are associated with disease activity in rheumatoid arthritis. Arthritis Rheum 46:1498–1503.  https://doi.org/10.1002/art.10312 CrossRefGoogle Scholar
  12. 12.
    Gasparyan AY, Stavropoulos-Kalinoglou A, Mikhailidis DP et al (2011) Platelet function in rheumatoid arthritis: arthritic and cardiovascular implications. Rheumatol Int 31:153–164.  https://doi.org/10.1007/s00296-010-1446-x CrossRefGoogle Scholar
  13. 13.
    Berckmans RJ, Nieuwland R, Tak PP et al (2002) Cell-derived microparticles in synovial fluid from inflamed arthritic joints support coagulation exclusively via a factor VII-dependent mechanism. Arthritis Rheum 46:2857–2866.  https://doi.org/10.1002/art.10587 CrossRefGoogle Scholar
  14. 14.
    Cai Z, Zhang W, Yang F et al (2012) Immunosuppressive exosomes from TGF-β1 gene-modified dendritic cells attenuate Th17-mediated inflammatory autoimmune disease by inducing regulatory T cells. Cell Res 22:607–610.  https://doi.org/10.1038/cr.2011.196 CrossRefGoogle Scholar
  15. 15.
    Michael BR, Misra D, Chengappa K, Negi V (2018) Relevance of elevated microparticles in peripheral blood and synovial fluid of patients with rheumatoid arthritis. Indian J Rheumatol 13:222.  https://doi.org/10.4103/injr.injr_101_18 CrossRefGoogle Scholar
  16. 16.
    Aletaha D, Neogi T, Silman AJ et al (2010) 2010 Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum 62:2569–2581.  https://doi.org/10.1002/art.27584 CrossRefGoogle Scholar
  17. 17.
    Carlson RV, Boyd KM, Webb DJ (2004) The revision of the Declaration of Helsinki: past, present and future. Br J Clin Pharmacol 57:695–713.  https://doi.org/10.1111/j.1365-2125.2004.02103.x CrossRefGoogle Scholar
  18. 18.
    Nielsen CT, Østergaard O, Stener L et al (2012) Increased IgG on cell-derived plasma microparticles in systemic lupus erythematosus is associated with autoantibodies and complement activation. Arthritis Rheum 64:1227–1236.  https://doi.org/10.1002/art.34381 CrossRefGoogle Scholar
  19. 19.
    Nielsen CT, Østergaard O, Stener L et al (2012) Increased IgG on cell-derived plasma microparticles in systemic lupus erythematosus is associated with autoantibodies and complement activation. Arthritis Rheum 64:1227–1236.  https://doi.org/10.1002/art.34381 CrossRefGoogle Scholar
  20. 20.
    Anderson J, Caplan L, Yazdany J et al (2012) Rheumatoid arthritis disease activity measures: American college of rheumatology recommendations for use in clinical practice. Arthritis Care Res 64:640–647.  https://doi.org/10.1002/acr.21649 CrossRefGoogle Scholar
  21. 21.
    Man Q, Zhang L, Zhao Y et al (2018) Lymphocyte-derived microparticles stimulate osteoclastogenesis by inducing RANKL in fibroblasts of odontogenic keratocysts. Oncol Rep 40:3335–3345.  https://doi.org/10.3892/or.2018.6708 Google Scholar
  22. 22.
    Kim H-R, Mun Y, Lee K-S et al (2018) T cell microvilli constitute immunological synaptosomes that carry messages to antigen-presenting cells. Nat Commun 9:3630.  https://doi.org/10.1038/s41467-018-06090-8 CrossRefGoogle Scholar
  23. 23.
    Angelillo-Scherrer A (2012) Leukocyte-derived microparticles in vascular homeostasis. Circ Res 110:356–369.  https://doi.org/10.1161/CIRCRESAHA.110.233403 CrossRefGoogle Scholar
  24. 24.
    Guervilly C, Lacroix R, Forel J-M et al (2011) High levels of circulating leukocyte microparticles are associated with better outcome in acute respiratory distress syndrome. Crit Care 15:R31.  https://doi.org/10.1186/cc9978 CrossRefGoogle Scholar
  25. 25.
    Distler JHW, Jungel A, Huber LC et al (2005) The induction of matrix metalloproteinase and cytokine expression in synovial fibroblasts stimulated with immune cell microparticles. Proc Natl Acad Sci 102:2892–2897.  https://doi.org/10.1073/pnas.0409781102 CrossRefGoogle Scholar
  26. 26.
    Berckmans RJ, Nieuwland R, Kraan MC et al (2005) Synovial microparticles from arthritic patients modulate chemokine and cytokine release by synoviocytes. Arthritis Res Ther 7:R536–R544.  https://doi.org/10.1186/ar1706 CrossRefGoogle Scholar
  27. 27.
    Messer L, Alsaleh G, Freyssinet JM et al (2009) Microparticle-induced release of B-lymphocyte regulators by rheumatoid synoviocytes. Arthritis Res Ther 11:1–10.  https://doi.org/10.1186/ar2648 CrossRefGoogle Scholar
  28. 28.
    Va Biró E, Nieuwland R, Tak PP et al (2007) Activated complement components and complement activator molecules on the surface of cell-derived microparticles in patients with rheumatoid arthritis and healthy individuals. Ann Rheum Dis 66:1085–1092.  https://doi.org/10.1136/ard.2006.061309 CrossRefGoogle Scholar
  29. 29.
    Reich N, Beyer C, Gelse K et al (2011) Microparticles stimulate angiogenesis by inducing ELR + CXC-chemokines in synovial fibroblasts. J Cell Mol Med 15:756–762.  https://doi.org/10.1111/j.1582-4934.2010.01051.x CrossRefGoogle Scholar
  30. 30.
    Jüngel A, Distler O, Schulze-Horsel U et al (2007) Microparticles stimulate the synthesis of prostaglandin E2 via induction of cyclooxygenase 2 and microsomal prostaglandin E synthase 1. Arthritis Rheum 56:3564–3574.  https://doi.org/10.1002/art.22980 CrossRefGoogle Scholar
  31. 31.
    Greisen SR, Yan Y, Hansen AS et al (2017) Extracellular vesicles transfer the receptor programmed death-1 in rheumatoid arthritis. Front Immunol 8:851.  https://doi.org/10.3389/fimmu.2017.00851 CrossRefGoogle Scholar
  32. 32.
    Polanco JC, Scicluna BJ, Hill AF, Götz J (2016) Extracellular vesicles isolated from the brains of rTg4510 mice seed tau protein aggregation in a threshold-dependent manner. J Biol Chem 291:12445–12466.  https://doi.org/10.1074/jbc.M115.709485 CrossRefGoogle Scholar
  33. 33.
    Wang W, Liu J, Yang B et al (2017) Modulation of platelet-derived microparticles to adhesion and motility of human rheumatoid arthritis fibroblast-like synoviocytes. PLoS One 12:e0181003.  https://doi.org/10.1371/journal.pone.0181003 CrossRefGoogle Scholar
  34. 34.
    Foulquier C, Sebbag M, Clavel C et al (2007) Peptidyl arginine deiminase type 2 (PAD-2) and PAD-4 but not PAD-1, PAD-3, and PAD-6 are expressed in rheumatoid arthritis synovium in close association with tissue inflammation. Arthritis Rheum 56:3541–3553.  https://doi.org/10.1002/art.22983 CrossRefGoogle Scholar
  35. 35.
    Wright HL, Moots RJ, Bucknall RC, Edwards SW (2010) Neutrophil function in inflammation and inflammatory diseases. Rheumatology 49:1618–1631.  https://doi.org/10.1093/rheumatology/keq045 CrossRefGoogle Scholar
  36. 36.
    Spengler J, Lugonja B, Jimmy Ytterberg A et al (2015) Release of active peptidyl arginine deiminases by neutrophils can explain production of extracellular citrullinated autoantigens in rheumatoid arthritis synovial fluid. Arthritis Rheumatol 67:3135–3145.  https://doi.org/10.1002/art.39313 CrossRefGoogle Scholar
  37. 37.
    Corsiero E, Pratesi F, Prediletto E et al (2016) NETosis as source of autoantigens in rheumatoid arthritis. Front Immunol 7:485.  https://doi.org/10.3389/fimmu.2016.00485 Google Scholar
  38. 38.
    Cloutier N, Tan S, Boudreau LH et al (2013) The exposure of autoantigens by microparticles underlies the formation of potent inflammatory components: the microparticle-associated immune complexes. EMBO Mol Med 5:235–249.  https://doi.org/10.1002/emmm.201201846 CrossRefGoogle Scholar
  39. 39.
    Burbano C, Rojas M, Muñoz-Vahos C et al (2018) Extracellular vesicles are associated with the systemic inflammation of patients with seropositive rheumatoid arthritis. Sci Rep.  https://doi.org/10.1038/s41598-018-36335-x Google Scholar
  40. 40.
    Pisetsky DS, Lipsky PE (2010) Microparticles as autoadjuvants in the pathogenesis of SLE. Nat Rev Rheumatol 6:368–372.  https://doi.org/10.1038/nrrheum.2010.66 CrossRefGoogle Scholar
  41. 41.
    Burnier L, Fontana P, Kwak BR, Angelillo-Scherrer A (2009) Cell-derived microparticles in haemostasis and vascular medicine. Thromb Haemost 101:439–451CrossRefGoogle Scholar
  42. 42.
    Boilard E, Nigrovic PA, Larabee K et al (2010) Platelets amplify inflammation in arthritis via collagen-dependent microparticle production. Science 327:580–583.  https://doi.org/10.1126/science.1181928 CrossRefGoogle Scholar
  43. 43.
    Barry OP, Pratico D, Lawson JA, FitzGerald GA (1997) Transcellular activation of platelets and endothelial cells by bioactive lipids in platelet microparticles. J Clin Invest 99:2118–2127.  https://doi.org/10.1172/JCI119385 CrossRefGoogle Scholar
  44. 44.
    Jüngel A, Distler O, Schulze-Horsel U et al (2007) Microparticles stimulate the synthesis of prostaglandin E2 via induction of cyclooxygenase 2 and microsomal prostaglandin E synthase 1. Arthritis Rheum 56:3564–3574.  https://doi.org/10.1002/art.22980 CrossRefGoogle Scholar
  45. 45.
    Barry OP, Praticò D, Savani RC, FitzGerald GA (1998) Modulation of monocyte-endothelial cell interactions by platelet microparticles. J Clin Invest 102:136–144.  https://doi.org/10.1172/JCI2592 CrossRefGoogle Scholar
  46. 46.
    Forlow SB, McEver RP, Nollert MU (2000) Leukocyte-leukocyte interactions mediated by platelet microparticles under flow. Blood 95:1317–1323Google Scholar
  47. 47.
    del Conde I, Shrimpton CN, Thiagarajan P, López JA (2005) Tissue-factor-bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation. Blood 106:1604–1611.  https://doi.org/10.1182/blood-2004-03-1095 CrossRefGoogle Scholar
  48. 48.
    Knijff-Dutmer EAJ, Koerts J, Nieuwland R et al (2002) Elevated levels of platelet microparticles are associated with disease activity in rheumatoid arthritis. Arthritis Rheum 46:1498–1503.  https://doi.org/10.1002/art.10312 CrossRefGoogle Scholar
  49. 49.
    Wang F, Wang N-S, Yan C-G et al (2007) The significance of platelet activation in rheumatoid arthritis. Clin Rheumatol 26:768–771.  https://doi.org/10.1007/s10067-007-0550-0 CrossRefGoogle Scholar
  50. 50.
    Maugeri N, Franchini S, Campana L et al (2012) Circulating platelets as a source of the damage-associated molecular pattern HMGB1 in patients with systemic sclerosis. Autoimmunity 45:584–587.  https://doi.org/10.3109/08916934.2012.719946 CrossRefGoogle Scholar
  51. 51.
    Lood C, Tydén H, Gullstrand B et al (2016) Decreased platelet size is associated with platelet activation and anti-phospholipid syndrome in systemic lupus erythematosus. Rheumatology 56:kew437.  https://doi.org/10.1093/rheumatology/kew437 CrossRefGoogle Scholar
  52. 52.
    Arraud N, Gounou C, Turpin D, Brisson AR (2016) Fluorescence triggering: a general strategy for enumerating and phenotyping extracellular vesicles by flow cytometry. Cytom Part A 89:184–195.  https://doi.org/10.1002/cyto.a.22669 CrossRefGoogle Scholar
  53. 53.
    Knijff-Dutmer EAJ, Koerts J, Nieuwland R et al (2002) Elevated levels of platelet microparticles are associated with disease activity in rheumatoid arthritis. Arthritis Rheum 46:1498–1503.  https://doi.org/10.1002/art.10312 CrossRefGoogle Scholar
  54. 54.
    Berckmans RJ, Nieuwland R, Tak PP et al (2002) Cell-derived microparticles in synovial fluid from inflamed arthritic joints support coagulation exclusively via a factor VII-dependent mechanism. Arthritis Rheum 46:2857–2866.  https://doi.org/10.1002/art.10587 CrossRefGoogle Scholar
  55. 55.
    Messer L, Alsaleh G, Freyssinet J-M et al (2009) Microparticle-induced release of B-lymphocyte regulators by rheumatoid synoviocytes. Arthritis Res Ther 11:R40.  https://doi.org/10.1186/ar2648 CrossRefGoogle Scholar
  56. 56.
    Umekita K, Hidaka T, Ueno S et al (2009) Leukocytapheresis (LCAP) decreases the level of platelet-derived microparticles (MPs) and increases the level of granulocytes-derived MPs: a possible connection with the effect of LCAP on rheumatoid arthritis. Mod Rheumatol 19:265–272.  https://doi.org/10.3109/s10165-009-0164-2 CrossRefGoogle Scholar
  57. 57.
    György B, Szabó TG, Turiák L et al (2012) Improved flow cytometric assessment reveals distinct microvesicle (cell-derived microparticle) signatures in joint diseases. PLoS One 7:e49726.  https://doi.org/10.1371/journal.pone.0049726 CrossRefGoogle Scholar
  58. 58.
    Rodríguez-Carrio J, Alperi-López M, López P et al (2015) Altered profile of circulating microparticles in rheumatoid arthritis patients. Clin Sci 128:437–448.  https://doi.org/10.1042/CS20140675 CrossRefGoogle Scholar
  59. 59.
    Viñuela-Berni V, Doníz-Padilla L, Figueroa-Vega N et al (2015) Proportions of several types of plasma and urine microparticles are increased in patients with rheumatoid arthritis with active disease. Clin Exp Immunol 180:442–451.  https://doi.org/10.1111/cei.12598 CrossRefGoogle Scholar
  60. 60.
    Fan W, Wang W, Wu J et al (2017) Identification of CD4 + T-cell-derived CD161 + CD39 + and CD39 + CD73 + microparticles as new biomarkers for rheumatoid arthritis. Biomark Med 11:107–116.  https://doi.org/10.2217/bmm-2016-0261 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Clinical ImmunologyJawaharlal Institute of Postgraduate Medical Education and Research (JIPMER)PondicherryIndia

Personalised recommendations