Advertisement

Rheumatology International

, Volume 39, Issue 4, pp 627–635 | Cite as

Fatty infiltration in the thigh muscles in knee osteoarthritis: a systematic review and meta-analysis

  • Maria Gabriela PedrosoEmail author
  • Aline Castilho de Almeida
  • Jéssica Bianca Aily
  • Marcos de Noronha
  • Stela Marcia Mattiello
Systematic review
  • 89 Downloads

Abstract

Knee osteoarthritis is a chronic degenerative joint disease, influenced by inflammatory, mechanical and metabolic processes. Current literature shows that thigh muscles of people with knee osteoarthritis can have increased infiltration of fat, both between and within the muscles (inter- and intramuscular fat). The fatty infiltration in the thigh in this population is correlated to systemic inflammation, poor physical function, and muscle impairment and leads to metabolic impairments and muscle disfunction. The objective of this study is to systematically review the literature comparing the amount of fatty infiltration between people with knee osteoarthritis and healthy controls. A literature search on the databases MEDLINE, Embase, CINAHL SPORTDiscuss, Web of Science and Scopus from insertion to December 2018, resulted in 1035 articles, from which 7 met inclusion/exclusion criteria and were included in the review. All included studies analyzed the difference in intermuscular fat and only one study analyzed intramuscular fat. A meta-analysis (random effects model) transforming data into standardized mean difference was performed for intermuscular fat (six studies). The meta-analysis showed a standardized mean difference of 0.39 (95% confidence interval from 0.25 to 0.53), showing that people with knee osteoarthritis have more intermuscular fat than healthy controls. The single study analyzing intramuscular fat shows that people with knee osteoarthritis have more intramuscular fat fraction than healthy controls. People with knee osteoarthritis have more fatty infiltration around the thigh than people with no knee osteoarthritis. That conclusion is stronger for intermuscular fat than intramuscular fat, based on the quality and number of studies analyzed.

Keywords

Arthritis Adipose tissue Fat distribution Body composition Muscle fat 

Notes

Acknowledgements

We would like to acknowledge the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) for the scholarship given to Maria Gabriela Pedroso and Aline de Castilho de Almeida.

Funding

This work was supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) with the PhD scholarship given to Maria G. Pedroso (Process number: 2015/19232-4) and Aline C. de Almeida (Process number: 2016/05047-3).

Compliance with ethical standards

Conflict of interest

Maria G. Pedroso declares that she has no conflict of interest. Aline C. de Almeida declares that she has no conflict of interest. Jéssica B. Aily declares that she has no conflict of interest. Marcos de Noronha declares that he has no conflict of interest. Stela M. Mattiello declares that she has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

296_2019_4271_MOESM1_ESM.docx (13 kb)
Supplementary material 1 (DOCX 13 KB)
296_2019_4271_MOESM2_ESM.docx (17 kb)
Supplementary material 2 (DOCX 16 KB)

References

  1. 1.
    Arden NK, Leyland KM (2013) Osteoarthritis year 2013 in review: clinical. Osteoarthr Cartil 21(10):1409–1413.  https://doi.org/10.1016/j.joca.2013.06.021 CrossRefGoogle Scholar
  2. 2.
    Heidari B (2011) Knee osteoarthritis prevalence, risk factors, pathogenesis and features: part I. Casp J Intern Med 2(2):205–212Google Scholar
  3. 3.
    Pottie P, Presle N, Terlain B, Netter P, Mainard D, Berenbaum F (2006) Obesity and osteoarthritis: more complex than predicted! Ann Rheum Dis 65(11):1403–1405.  https://doi.org/10.1136/ard.2006.061994 CrossRefGoogle Scholar
  4. 4.
    Sellam J, Berenbaum F (2013) Is osteoarthritis a metabolic disease? Jt Bone Spine 80(6):568–573.  https://doi.org/10.1016/j.jbspin.2013.09.007 CrossRefGoogle Scholar
  5. 5.
    Collins KH, Herzog W, MacDonald GZ, Reimer RA, Rios JL, Smith IC et al (2018) Obesity, metabolic syndrome, and musculoskeletal disease: Common inflammatory pathways suggest a central role for loss of muscle integrity. Front Physiol 9(112):1–25.  https://doi.org/10.3389/fphys.2018.00112 Google Scholar
  6. 6.
    Yoshimura N, Muraki S, Oka H, Tanaka S, Kawaguchi H, Nakamura K et al (2012) Accumulation of metabolic risk factors such as overweight, hypertension, dyslipidaemia, and impaired glucose tolerance raises the risk of occurrence and progression of knee osteoarthritis: a 3-year follow-up of the ROAD study. Osteoarthr Cartil 20(11):1217–1226.  https://doi.org/10.1016/j.joca.2012.06.006 CrossRefGoogle Scholar
  7. 7.
    Berenbaum F (2013) Osteoarthritis as an inflammatory disease (osteoarthritis is not osteoarthrosis!). Osteoarthr Cartil 21(1):16–21.  https://doi.org/10.1016/j.joca.2012.11.012 CrossRefGoogle Scholar
  8. 8.
    Attur M, Krasnokutsky S, Statnikov A, Samuels J, Li Z, Friese O et al (2015) Low-Grade inflammation in symptomatic knee osteoarthritis: prognostic value of inflammatory plasma lipids and peripheral blood leukocyte biomarkers. Arthritis Rheumatol 67(11):2905–2915.  https://doi.org/10.1002/art.39279 CrossRefGoogle Scholar
  9. 9.
    Shin D (2014) Association between metabolic syndrome, radiographic knee osteoarthritis, and intensity of knee pain: results of a national survey. J Clin Endocrinol Metab 99:3177–3183.  https://doi.org/10.1210/jc.2014-1043 CrossRefGoogle Scholar
  10. 10.
    Issa RI, Griffin TM (2012) Pathobiology of obesity and osteoarthritis: integrating biomechanics and inflammation. Pathobiol Aging Age Relat Dis 2:1–7.  https://doi.org/10.3402/pba.v2i0.17470 Google Scholar
  11. 11.
    Visser AW, De Mutsert R, Cessie S, Den Heijer M, Rosendaal FR, Kloppenburg M et al (2015) The relative contribution of mechanical stress and systemic processes in different types of osteoarthritis: the NEO study. Ann Rheum Dis 74(10):1842–1847.  https://doi.org/10.1136/annrheumdis-2013-205012 CrossRefGoogle Scholar
  12. 12.
    Oliveria SA, Felson DT, Cirillo PA, Reed JI, Walker A (1999) Body weight, body mass index, and incident symptomatic osteoarthritis of the hand, hip, and knee. Epidemiology 10(2):161–166.  https://doi.org/10.1097/00001648-199903000-00013 CrossRefGoogle Scholar
  13. 13.
    Gabay O, Hall DJ, Berenbaum F, Henrotin Y, Sanchez C (2008) Osteoarthritis and obesity: experimental models. Jt Bone Spine 75(6):675–679.  https://doi.org/10.1016/j.jbspin.2008.07.011 CrossRefGoogle Scholar
  14. 14.
    Addison O, Marcus RL, Lastayo PC, Ryan AS (2014) Intermuscular fat: a review of the consequences and causes. Int J Endocrinol 2014:309570.  https://doi.org/10.1155/2014/309570 CrossRefGoogle Scholar
  15. 15.
    Hausman GJ, Basu U, Du M, Fernyhough-Culver M, Dodson MV (2014) Intermuscular and intramuscular adipose tissues: bad vs. good adipose tissues. Adipocyte 3(4):242–255.  https://doi.org/10.4161/adip.28546 CrossRefGoogle Scholar
  16. 16.
    Beasley LE, Koster A, Newman AB, Javaid MK, Ferrucci L, Kritchevsky SB et al (2009) Body composition measures from CT and inflammation. Obesity (Silver Spring) 17(5):1062–1069.  https://doi.org/10.1038/oby.2008.627 CrossRefGoogle Scholar
  17. 17.
    Messier SP, Beavers DP, Loeser RF, Carr JJ, Khajanchi S, Legault C et al (2014) Knee joint loading in knee osteoarthritis: influence of abdominal and thigh fat. Med Sci Sport Exerc 46(9):1677–1683.  https://doi.org/10.1249/MSS.0000000000000293 CrossRefGoogle Scholar
  18. 18.
    Wang X, Hunter D, Xu J, Ding C (2015) Metabolic triggered inflammation in osteoarthritis. Osteoarthr Cartil 23:22–30.  https://doi.org/10.1016/j.joca.2014.10.002 CrossRefGoogle Scholar
  19. 19.
    Ruan XY, Gallagher D, Harris T, Albu J, Heymsfield S, Kuznia P et al (2007) Estimating whole body intermuscular adipose tissue from single cross-sectional magnetic resonance images. J Appl Physiol 102(2):748–754.  https://doi.org/10.1152/japplphysiol.00304.2006 CrossRefGoogle Scholar
  20. 20.
    Kumar D, Karampinos DC, Macleod TD, Lin W, Nardo L, Li X et al (2014) Quadriceps intramuscular fat fraction rather than muscle size is associated with knee osteoarthritis. Osteoarthr Cartil 22(2):226–234.  https://doi.org/10.1016/j.joca.2013.12.005 CrossRefGoogle Scholar
  21. 21.
    Zoico E, Rossi A, Di Francesco V, Sepe A, Olioso D, Pizzini F et al (2010) Adipose tissue infiltration in skeletal muscle of healthy elderly men: relationships with body composition, insulin resistance, and inflammation at the systemic and tissue level. J Gerontol A Biol Sci Med Sci 65(3):295–299.  https://doi.org/10.1093/gerona/glp155 CrossRefGoogle Scholar
  22. 22.
    Vuolteenaho K, Koskinen A, Moilanen E (2014) Leptin—a link between obesity and osteoarthritis: applications for prevention and treatment. Basic Clin Pharmacol Toxicol 114(1):103–108.  https://doi.org/10.1111/bcpt.12160 CrossRefGoogle Scholar
  23. 23.
    Gür H, Çakin N (2003) Muscle mass, isokinetic torque, and functional capacity in women with osteoarthritis of the knee. Arch Phys Med Rehabil 84:1534–1541.  https://doi.org/10.1016/S0003-9993(03)00288-0 CrossRefGoogle Scholar
  24. 24.
    Delmonico MJ, Harris TB, Visser M, Park SW, Conroy MB, Velasquez-Mieyer P et al (2009) Longitudinal study of muscle strength, quality, and adipose tissue infiltration. Am J Clin Nutr 90(6):1579–1585.  https://doi.org/10.3945/ajcn.2009.28047 CrossRefGoogle Scholar
  25. 25.
    Davison MJ, Maly MR, Keir PJ, Hapuhennedige SM, Kron AT, Adachi JD et al (2017) Lean muscle volume of the thigh has a stronger relationship with muscle power than muscle strength in women with knee osteoarthritis. Clin Biomech 41:92–97.  https://doi.org/10.1016/j.clinbiomech.2016.11.005 CrossRefGoogle Scholar
  26. 26.
    Maly MR, Calder KM, Macintyre NJ, Beattie KA (2013) Relationship of intermuscular fat volume in the thigh with knee extensor strength and physical performance in women at risk of or with knee osteoarthritis. Arthritis Care Res (Hoboken) 65(1):44–52.  https://doi.org/10.1002/acr.21868 CrossRefGoogle Scholar
  27. 27.
    Downs SH, Black N (1998) The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J Epidemiol Commun Health 52(6):377–384.  https://doi.org/10.1136/jech.52.6.377 CrossRefGoogle Scholar
  28. 28.
    Green R, Shanley K, Taylor NF, Perrott M (2008) The anatomical basis for clinical tests assessing musculoskeletal function of the shoulder. Phys Ther Rev 13(1):17–24.  https://doi.org/10.1179/174328808X251966 CrossRefGoogle Scholar
  29. 29.
    Conroy MB, Kwoh CK, Krishnan E, Nevitt MC, Boudreau R, Carbone LD et al (2012) Muscle strength, mass, and quality in older men and women with knee osteoarthritis. Arthritis Care Res (Hoboken) 64(1):15–21.  https://doi.org/10.1002/acr.20588 CrossRefGoogle Scholar
  30. 30.
    Higgins J, Greens S (2011) Cochrane handbook for systematic reviews of interventions version 5.1.0. In: The Cochrane collaboration p. 2011Google Scholar
  31. 31.
    Beattie KA, MacIntyre NJ, Ramadan K, Inglis D, Maly MR (2012) Longitudinal changes in intermuscular fat volume and quadriceps muscle volume in the thighs of women with knee osteoarthritis. Arthritis Care Res (Hoboken) 64(1):22–29.  https://doi.org/10.1002/acr.20628 CrossRefGoogle Scholar
  32. 32.
    Dannhauer T, Ruhdorfer A, Wirth W, Eckstein F (2015) Quantitative relationship of thigh adipose tissue with pain, radiographic status, and progression of knee osteoarthritis longitudinal findings from the osteoarthritis initiative. Invest Radiol 50(4):268–274.  https://doi.org/10.1097/RLI.0000000000000113 CrossRefGoogle Scholar
  33. 33.
    Ruhdorfer A, Wirth W, Dannhauer T, Eckstein F (2015) Longitudinal (4 year) change of thigh muscle and adipose tissue distribution in chronically painful vs. painless knees—data from the osteoarthritis initiative. Osteoarthr Cartil 23(8):1348–1356.  https://doi.org/10.1016/j.joca.2015.04.004 CrossRefGoogle Scholar
  34. 34.
    Ikeda S, Tsumura H, Torisu T (2005) Age-related quadriceps-dominant muscle atrophy and incident radiographic knee osteoarthritis. J Orthop Sci 10(2):121–126.  https://doi.org/10.1007/s00776-004-0876-2 CrossRefGoogle Scholar
  35. 35.
    Yu H, Shimakawa A, McKenzie CA, Brodsky E, Brittain JH, Reeder SB (2008) Multiecho water-fat separation and simultaneous R*2 estimation with multifrequency fat spectrum modeling. Magn Reson Med 60(5):1122–1134.  https://doi.org/10.1002/mrm.21737 CrossRefGoogle Scholar
  36. 36.
    Åhlén M, Roshani L, Lidén M, Struglics A, Rostgård-Christensen L, Kartus J (2015) Inflammatory cytokines and biomarkers of cartilage metabolism 8 years after anterior cruciate ligament reconstruction: results from operated and contralateral knees. Am J Sports Med 43(6):1460–1466.  https://doi.org/10.1177/0363546515574059 CrossRefGoogle Scholar
  37. 37.
    Jiang L, Tian W, Wang Y, Rong J, Bao C, Liu Y et al (2012) Body mass index and susceptibility to knee osteoarthritis: a systematic review and meta-analysis. Jt Bone Spine 79(3):291–297.  https://doi.org/10.1016/j.jbspin.2011.05.015 CrossRefGoogle Scholar
  38. 38.
    Sowers M, Karvonen-Gutierrez CA (2010) The evolving role of obesity in knee osteoarthritis. Curr Opin Rheumatol 22(5):533–537.  https://doi.org/10.1097/BOR.0b013e32833b4682 CrossRefGoogle Scholar
  39. 39.
    Roubenoff R, Hughes VA (2000) Sarcopenia: Current Concepts. J Gerontol A Biol Sci Med Sci 55(12):M716–M724CrossRefGoogle Scholar
  40. 40.
    Yoshida Y, Marcus RL, Lastayo PC (2012) Intramuscular adipose tissue and central activation in older adults. Muscle Nerve 46(5):813–816.  https://doi.org/10.1002/mus.23506 CrossRefGoogle Scholar
  41. 41.
    Goodpaster BH, Kelley DE, Thaete FL, He J, Ross R (2000) Skeletal muscle attenuation determined by computed tomography is associated with skeletal muscle lipid content. J Appl Physiol 89(1):104–110.  https://doi.org/10.1152/jappl.2000.89.1.104 CrossRefGoogle Scholar
  42. 42.
    Marcus RL, Addison O, Lastayo PC (2013) Intramuscular adipose tissue attenuates gains in muscle quality in older adults at high risk for falling. A brief report. J Nutr Heal Aging 17(3):215–218.  https://doi.org/10.1007/s12603-012-0377-5 CrossRefGoogle Scholar
  43. 43.
    Coen PM, Goodpaster BH (2012) Role of intramyocelluar lipids in human health. Trends Endocrinol Metab 23(8):391–398.  https://doi.org/10.1016/j.tem.2012.05.009 CrossRefGoogle Scholar
  44. 44.
    Wang J, Leung K, Chow SK, Cheung W (2017) Inflammation and age-associated skeletal muscle deterioration (sarcopaenia). J Orthop Transl 10:94–101.  https://doi.org/10.1016/j.jot.2017.05.006 Google Scholar
  45. 45.
    Meyer DC, Hoppeler H, Von Rechenberg B, Gerber C (2004) A pathomechanical concept explains muscle loss and fatty muscular changes following surgical tendon release. J Orthop Res 22:1004–1007.  https://doi.org/10.1016/j.orthres.2004.02.009 CrossRefGoogle Scholar
  46. 46.
    Culvenor AG, Felson DT, Wirth W, Dannhauer T, Eckstein F (2018) Is local or central adiposity more strongly associated with incident knee osteoarthritis than the body mass index in men or women? Osteoarthr Cartil 26(8):1033–1037.  https://doi.org/10.1016/j.joca.2018.05.006 CrossRefGoogle Scholar
  47. 47.
    Felson DT, Lawrence RC, Dieppe PA, Hirsch R, Helmick CG, Jordan JM et al (2000) Osteoarthritis: new insights. Part I: the disease and its risk factors. Ann Intern Med 133(8):637–639.  https://doi.org/10.7326/0003-4819-133-8-200010170-00016 CrossRefGoogle Scholar
  48. 48.
    Davison MJ, Maly MR, Adachi JD, Noseworthy MD, Beattie KA (2017) Relationships between fatty infiltration in the thigh and calf in women with knee osteoarthritis. Aging Clin Exp Res 29(2):291–299.  https://doi.org/10.1007/s40520-016-0556-z CrossRefGoogle Scholar
  49. 49.
    Zhang W, Nuki G, Moskowitz RW, Abramson S, Altman RD, Arden NK et al (2010) OARSI recommendations for the management of hip and knee osteoarthritis. Part III: changes in evidence following systematic cumulative update of research published through January 2009. Osteoarthr Cartil 18(4):476–499.  https://doi.org/10.1016/j.joca.2010.01.013 CrossRefGoogle Scholar
  50. 50.
    Messier SP, Mihalko SL, Legault C, Miller GD, Nicklas BJ, DeVita P et al (2013) Effects of intensive diet and exercise on knee joint loads, inflammation, and clinical outcomes among overweight and obese adults with knee osteoarthritis: the IDEA randomized clinical trial. Jama 310(12):1263–1273.  https://doi.org/10.1001/jama.2013.277669 CrossRefGoogle Scholar
  51. 51.
    Jacobs JL, Marcus RL, Morrell G, Lastayo P (2014) Resistance exercise with older fallers: its impact on intermuscular adipose tissue. Biomed Res Int 2014:398960.  https://doi.org/10.1155/2014/398960 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physical Therapy, Center of Biological and Health SciencesFederal University of São CarlosSão CarlosBrazil
  2. 2.Community and Allied Health Department, Rural Health SchoolLa Trobe UniversityBendigoAustralia

Personalised recommendations