Advertisement

Rheumatology International

, Volume 38, Issue 8, pp 1539–1546 | Cite as

Correlation of neurocognitive function and brain lesion load on magnetic resonance imaging in systemic lupus erythematosus

  • Paola C. Roldan
  • Rex E. Jung
  • Wilmer L. Sibbitt
  • Clifford R. Qualls
  • Ranee A. Flores
  • Carlos A. Roldan
Observational Research
  • 32 Downloads

Abstract

Neurocognitive dysfunction and brain injury on magnetic resonance imaging (MRI) are common in patients with systemic lupus erythematosus (SLE) and are associated with increased morbidity and mortality. However, brain MRI is expensive, is restricted by payers, and requires high expertise. Neurocognitive assessment is an easily available, safe, and inexpensive clinical tool that may select patients needing brain MRI. In this cross-sectional and controlled study, 76 SLE patients (69 women, age 37 ± 12 years) and 26 age and gender-matched healthy subjects (22 women, age 34 ± 11 years) underwent assessment of attention, memory, processing speed, executive function, motor function, and global neurocognitive function. All subjects underwent brain MRI with T1-weighted, fluid-attenuated inversion recovery (FLAIR), and diffusion-weighted imaging. Hemispheric and whole brain lesion load in cm3 were determined using semi-automated methods. Neurocognitive z-scores in all clinical domains were significantly lower and whole brain and right and left hemispheres brain lesion load were significantly greater in patients than in controls (all p ≤ 0.02). There was significant correlation between neurocognitive z-scores in all domains and whole brain lesion load: processing speed (r = − 0.46; p < 0.0001), attention (r = − 0.42; p < 0.001), memory (r = − 0.40; p = 0.0004), executive function (r = − 0.25; p = 0.03), motor function (r = − 0.25; p = 0.05), and global neurocognitive function (r = − 0.38; p = 0.006). Similar correlations were found for brain hemisphere lesion loads (all p ≤ 0.05). These correlations were strengthened when adjusted for glucocorticoid therapy and SLE disease activity index. Finally, global neurocognitive z-score and erythrosedimentation rate were the only independent predictors of whole brain lesion load (both p ≤ 0.007). Neurocognitive measures and brain lesion load are worse in SLE patients than in controls. In SLE patients, neurocognitive z-scores correlate negatively with and independently predict brain lesion load. Therefore, neurocognitive testing may be an effective clinical tool to select patients needing brain MRI.

Keywords

Neurocognitive function Brain injury Magnetic resonance imaging Systemic lupus erythematosus 

Notes

Acknowledgements

This research was funded by the Grant RO1-HL04722-01-A6 by the National Institutes of Health/National Heart Lung and Blood Institute and in part by the National Center for Research Resources and National Center for Advancing Translational Sciences through the Grant Number 8UL1-TR00004-1.

Compliance with ethical standards

Conflict of interest

None of the authors has a conflict of interest to disclose.

References

  1. 1.
    Carbotte RM, Denburg SD, Denburg JA (1986) Prevalence of cognitive impairment in systemic lupus erythematosus. J Nerv Ment Dis 174:357–364CrossRefPubMedGoogle Scholar
  2. 2.
    Monastero R, Bettini P, Del Zotto E, Cottini E, Tincani A, Balestrieri G, Cattaneo R, Camarda R, Vignolo LA, Padovani A (2001) Prevalence and pattern of cognitive impairment in systemic lupus erythematosus patients with and without overt neuropsychiatric manifestations. J Neurol Sci 184:33–39CrossRefPubMedGoogle Scholar
  3. 3.
    Sabet A, Sibbitt WL Jr, Stidley CA, Danska J, Brooks WM (1998) Neurometabolite markers of cerebral injury in the antiphospholipid antibody syndrome of systemic lupus erythematosus. Stroke 29:2254–2260CrossRefPubMedGoogle Scholar
  4. 4.
    Sibbitt WL Jr, Brooks WM, Kornfeld M, Hart BL, Bankhurst AD, Roldan CA (2010) Magnetic resonance imaging and brain histopathology in neuropsychiatric systemic lupus erythematosus. Semin Arthritis Rheum 40:32–52CrossRefPubMedGoogle Scholar
  5. 5.
    Navarrete MG, Brey RL (2000) Neuropsychiatric systemic lupus erythematosus. Curr Treat Options Neurol 2:473–485CrossRefPubMedGoogle Scholar
  6. 6.
    Luyendijk J, Steens SC, Ouwendijk WJ, Steup-Beekman GM, Bollen EL, van der Grond J, Huizinga TW, Emmer BJ, van Buchem MA (2011) Neuropsychiatric systemic lupus erythematosus: lessons learned from magnetic resonance imaging. Arthritis Rheum 63:722–732CrossRefPubMedGoogle Scholar
  7. 7.
    Jung RE, Chavez RS, Flores RA, Qualls C, Sibbitt WL Jr, Roldan CA (2012) White matter correlates of neuropsychological dysfunction in systemic lupus erythematosus. PLoS One 7:e28373CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Bombardier C, Gladman DD, Urowitz MB, Caron D, Chang CH (1992) Derivation of the SLEDAI. A disease activity index for lupus patients. The Committee on Prognosis Studies in SLE. Arthritis Rheum 35:630–640CrossRefPubMedGoogle Scholar
  9. 9.
    Scully M, Anderson B, Lane T, Gasparovic C, Magnotta V, Sibbitt W, Roldan C, Kikinis R, Bockholt HJ (2010) An automated method for segmenting white matter lesions through multi-level morphometric feature classification with application to lupus. Front Hum Neurosci 19:4:27Google Scholar
  10. 10.
    Hochberg MC (1997) Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus [letter]. Arthritis Rheum 40:1725CrossRefPubMedGoogle Scholar
  11. 11.
    Gladman DD, Urowitz MB, Goldsmith CH, Fortin P, Ginzler E, Gordon C, Hanly JG, Isenberg DA, Kalunian K, Nived O, Petri M, Sanchez-Guerrero J, Snaith M, Sturfelt G (1997) The reliability of the systemic lupus international collaborating clinics/American College of rheumatology damage index in patients with systemic lupus erythematosus. Arthritis Rheum 40:809–813CrossRefPubMedGoogle Scholar
  12. 12.
    Kozora E, Ellison MC, West S (2004) Reliability and validity of the proposed American College of Rheumatology neuropsychological battery for systemic lupus erythematosus. Arthritis Rheum 51:810–818CrossRefPubMedGoogle Scholar
  13. 13.
    Brooks WM, Jung RE, Ford CC, Greinel EJ, Sibbitt WL Jr (1999) Jr. Relationship between neurometabolite derangement and neurocognitive dysfunction in systemic lupus erythematosus. J Rheumatol 26:81–85PubMedGoogle Scholar
  14. 14.
    Roldan CA, Sibbitt WL Jr, Qualls CR, Jung RE, Greene ER, Gasparovic CM, Hayek RA, Charlton GA, Crookston K (2013) Libman-sacks endocarditis and embolic cerebrovascular disease. JACC Cardiovasc Imaging 6:973–83CrossRefGoogle Scholar
  15. 15.
    Aisen AM, Gabrielsen TO, McCune WJ (1985) MR imaging of systemic lupus erythematosus involving the brain. Am J Roentgenol 144:1027–1031CrossRefGoogle Scholar
  16. 16.
    McCune WJ, MacGuire A, Aisen A, Gebarski S (1988) Identification of brain lesions in neuropsychiatric systemic lupus erythematosus by magnetic resonance scanning. Arthritis Rheum 31:159–66CrossRefPubMedGoogle Scholar
  17. 17.
    Brooks WM, Sabet A, Sibbitt WL Jr, Barker PB, van Zijl PC, Duyn JH, Moonen CT (1997) Neurochemistry of brain lesions determined by spectroscopic imaging in systemic lupus erythematosus. J Rheum 24:2323–2329PubMedGoogle Scholar
  18. 18.
    Sibbitt WL Jr, Sibbitt RR, Brooks WM (1999) Neuroimaging in neuropsychiatric SLE. Arthritis Rheum 42:2026–2038CrossRefPubMedGoogle Scholar
  19. 19.
    Jarek M, West SG, Baker MR et al (1994) Magnetic resonance imaging in systemic lupus erythematosus patients without a history of neuropsychiatric lupus erythematosus. Arthritis Rheum 37:1609–1613CrossRefPubMedGoogle Scholar
  20. 20.
    Sibbitt WL Jr, Sibbitt RR, Griffey RH, Eckel C, Bankhurst AD (1989) Magnetic resonance and CT imaging in the evaluation of acute neuropsychiatric disease in systemic lupus erythematosus. Ann Rheum Dis 48:1014–1022CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kozora E, West SG, Kotzin BL, Julian l, Porter S, Bigler E (1998) Magnetic resonance imaging abnormalities and cognitive defects in systemic lupus erythematosus patients without overt central nervous system disease. Arthritis Rheum 41:41–47CrossRefPubMedGoogle Scholar
  22. 22.
    Turken A, Whitfield-Gabrieli S, Bammer R, Baldo JV, Dronkers NF, Gabrieli JD (2008) Cognitive processing speed and the structure of white matter pathways: convergent evidence from normal variation and lesion studies. Neuroimage 42:1032–1044CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Johnson R, Richardson EP (1968) The neurological manifestations of systemic lupus erythematosus. A clinical-pathological study of 24 cases and review of the literature. Medicine 47:337–369CrossRefPubMedGoogle Scholar
  24. 24.
    Ellis SG, Verity MA (1979) Central nervous systemic involvement in systemic lupus erythematosus: a review of neuropathological findings in 57 cases, 1955–1977. Semin Arthritis Rheum 8:212–221CrossRefPubMedGoogle Scholar
  25. 25.
    Hanly JG, Walsh N, Sangalang V (1992) Brain pathology in systemic lupus erythematosus. J Rheumatol 19:732–741PubMedGoogle Scholar
  26. 26.
    Belmont HM, Abramson SB, Lie JT (1996) Pathology and pathogenesis of vascular injury in systemic lupus erythematosus: interactions of inflammatory cells and activated endothelium. Arthritis Rheum 39:9–22CrossRefPubMedGoogle Scholar
  27. 27.
    Sarbu N, Alobeidi F, Toledano P, Espinosa G, Giles I, Rahman A, Yousry T, Capurro S, Jäger R, Cervera R, Bargalló N (2015) Brain abnormalities in newly diagnosed neuropsychiatric lupus: systematic MRI approach and correlation with clinical and laboratory data in a large multicenter cohort. Autoimmun Rev 14:153–159CrossRefPubMedGoogle Scholar
  28. 28.
    Cohen D, Rijnink EC, Nabuurs RJ, Steup-Beekman GM, Versluis MJ, Emmer BJ, Zandbergen M, van Buchem MA, Allaart CF, Wolterbeek R, Bruijn JA, van Duinen SG, Huizinga TW, Bajema IM (2017) Brain histopathology in patients with systemic lupus erythematosus: identification of lesions associated with clinical neuropsychiatric lupus syndromes and the role of complement. Rheumatology (Oxford) 56:77–86CrossRefGoogle Scholar
  29. 29.
    Jeong HW1, Her M, Bae JS, Kim SK, Lee SW, Kim HK, Kim D, Park N, Chung WT, Lee SY, Choe JY, Kim IJ (2015) Brain MRI in neuropsychiatric lupus: associations with the 1999 ACR case definitions. Rheumatol Int 35:861–869CrossRefPubMedGoogle Scholar
  30. 30.
    Hanly JG, Urowitz MB, Su L, Sanchez-Guerrero J, Bae SC, Gordon C, Wallace DJ, Isenberg D, Alarcón GS, Merrill JT, Clarke A, Bernatsky S, Dooley MA, Fortin PR, Gladman D, Steinsson K, Petri M, Bruce IN, Manzi S, Khamashta M, Zoma A, Font J, Van Vollenhoven R, Aranow C, Ginzler E, Nived O, Sturfelt G, Ramsey-Goldman R, Kalunian K, Douglas J, Qiufen Qi K, Thompson K, Farewell V; Systemic Lupus International Collaborating Clinics (2008) Short-term outcome of neuropsychiatric events in systemic lupus erythematosus upon enrollment into an international inception cohort study. Arthritis Rheum 59:721–729CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Roldan CA, Gelgand EA, Qualls CR, Sibbitt WL Jr (2006) Valvular heart disease is associated with non-focal neuropsychiatric systemic lupus erythematosus. J Clin Rheumatol 12:3–10CrossRefPubMedGoogle Scholar
  32. 32.
    DeGiorgio LA, Konstantinov KN, Lee SC et al (2001) A subset of lupus anti-DNA antibodies cross-reacts with the NR2 glutamate receptor in systemic lupus erythematosus. Nat Med 7:1189–1193CrossRefPubMedGoogle Scholar
  33. 33.
    Lipton SA, Rosenberg PA (1994) Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med 330:613–22CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Medicine, Divisions of Cardiology and RheumatologyUniversity of New Mexico School of MedicineAlbuquerqueUSA

Personalised recommendations