Advertisement

Rheumatology International

, Volume 38, Issue 8, pp 1345–1354 | Cite as

Novel insights into the role of inflammasomes in autoimmune and metabolic rheumatic diseases

  • Kleopatra Deuteraiou
  • George Kitas
  • Alexandros Garyfallos
  • Theodoros Dimitroulas
Review

Abstract

Inflammasomes are large intracellular complexes that induce inflammation in response to exogenous and endogenous damage signals. They regulate production and release of the proinflammatory cytokines IL-1β and IL-18, playing a defensive role against infections. Inflammasomes have also been involved in the pathogenesis of a wide range of autoinflammatory conditions that are caused by dysregulation of the IL-1 pathway, such as cryopyrinopathies and hereditary periodic fever syndromes. On top of that, research in recent years suggests that defects in inflammasome regulation and signaling associate with a number of autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematosus, systemic sclerosis and others. In this review, we describe the inflammasome and mechanisms that trigger it, provide a brief review of autoinflammatory disorders and discuss the current understanding and emerging data from experimental and clinical studies for the role of the innate immune system and inflammasomes in the biology and pathogenesis of systemic autoimmune diseases.

Keywords

Inflammasomes Systemic rheumatic disease Systemic sclerosis Systemic lupus erythematosous Rheumatoid arthritis Gout 

Notes

Funding

The study received no funding.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Mullen LM, Chamberlain G, Sacre S (2015) Pattern recognition receptors as potential therapeutic targets in inflammatory rheumatic disease. Arthritis Res Ther 17:122CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Baccala R, Gonzalez-Quintial R, Lawson BR et al (2009) Sensors of the innate immune system: their mode of action. Nat Rev Rheumatol 5:448–456CrossRefPubMedGoogle Scholar
  3. 3.
    Theofilopoulos AN, Gonzalez-Quintial R, Lawson BR (2010) Sensors of the innate immune system: their link to rheumatic diseases. Nat Rev Rheumatol 6:146–156CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Sidiropoulos PI, Goulielmos G, Voloudakis GK, Petraki E, Boumpas DT (2008) Inflammasomes and rheumatic diseases: evolving concepts. Ann Rheum Dis 67:1382–1389CrossRefPubMedGoogle Scholar
  5. 5.
    Yang CA, Chiang BL (2015) Inflammasomes and human autoimmunity: a comprehensive review. J Autoimmun 61:1–8CrossRefPubMedGoogle Scholar
  6. 6.
    Gasparyan AY, Ayvazyan L, Blackmore H, Kitas GD (2011) Writing a narrative biomedical review: considerations for authors, peer reviewers, and editors. Rheumatol Int 31:1409–1417CrossRefPubMedGoogle Scholar
  7. 7.
    Lamkanfi M, Dixit VM (2012) Inflammasomes and their roles in health and disease. Ann Rev Cell Dev Biol 28:137–161CrossRefGoogle Scholar
  8. 8.
    Rathinam VA, Vanaja SK, Fitzgerald KA (2012) Regulation of inflammasome signaling. Nat Immunol 13(4):333–342CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Martinon F, Mayor A, Tschopp J (2009) The inflammasomes: guardians of the body. Annu Rev Immunol 27:229–265CrossRefPubMedGoogle Scholar
  10. 10.
    Elliott EI, Sutterwala FS (2015) Initiation and perpetuation of NLRP3 inflammasome activation and assembly. Immunol Rev 265:35–52CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    De Torre-Minguela C, Mesa Del Castillo P, Pelegrín P (2017) The NLRP3 and Pyrin inflammasomes: implications in the pathophysiology of autoinflammatory diseases. Front Immunol 8:43PubMedPubMedCentralGoogle Scholar
  12. 12.
    Lucherini OM, Rigante D, Sota J (2018) Updated overview of molecular pathways involved in the most common monogenic autoinflammatory diseases. Clin Exp Rheumatol Suppl 110:3–9Google Scholar
  13. 13.
    Jesus AA, Goldbach-Mansky R (2014) IL-1 blockade in autoinflammatory syndromes. Annu Rev Med 65:223–244CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hoffman HM, Wright FA, Broide DH, Wanderer AA, Kolodner RD (2000) Identification of a locus on chromosome 1q44 for familial cold urticaria. Am J Hum Genet 66:1693–1698CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    The International FMF Consortium (1997) Ancient missense mutations in a new member of the RoRet gene family are likely to cause familial Mediterranean fever. Cell 90:797–807CrossRefGoogle Scholar
  16. 16.
    Booth DR, Gillmore JD, Lachmann HJ et al (2000) The genetic basis of autosomal dominant familial Mediterranean fever. QJM 93:217–221CrossRefPubMedGoogle Scholar
  17. 17.
    Zemer D, Pras M, Sohar E, Modan M, Cabili S, Gafni J (1986) Colchicine in the prevention and treatment of the amyloidosis of familial Mediterranean fever. N Engl J Med 314:1001–1005CrossRefPubMedGoogle Scholar
  18. 18.
    Savic S, Dickie LJ, Wittmann M, McDermott MF (2012) Autoinflammatory syndromes and cellular responses to stress: pathophysiology, diagnosis and new treatment perspectives. Best Pract Res Clin Rheumatol 26:505–533CrossRefPubMedGoogle Scholar
  19. 19.
    Chae JJ, Wood G, Masters SL, Richard K, Park G, Smith BJ, Kastner DL (2006) The B30.2 domain of pyrin, the familial Mediterranean fever protein, interacts directly with caspase-1 to modulate IL-1βproduction. Proc Natl Acad Sci USA 103:9982–9987CrossRefPubMedGoogle Scholar
  20. 20.
    Xu H, Yang J, Gao W (2014) Innate immune sensing of bacterial modifications of Rho GTPases by the pyrin inflammasome. Nature 513:237–241CrossRefPubMedGoogle Scholar
  21. 21.
    The French FMF Consortium (1997) A candidate gene for familial Mediterranean fever. Nat Genet 17:25–31CrossRefGoogle Scholar
  22. 22.
    Simon A, Park H, Maddipati R et al (2010) Concerted action of wild-type and mutant TNF receptors enhances inflammation in TNF receptor 1-associated periodic fever syndrome. Proc Natl Acad Sci USA 107:9801–9806CrossRefPubMedGoogle Scholar
  23. 23.
    Bulua AC, Simon A, Maddipati R et al (2011) Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS). J Exp Med 208:519–533CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Drenth JP, Göertz J, Daha MR, van der Meer JW (1996) Immunoglobulin D enhances the release of tumor necrosis factor-α, and interleukin-1βas well as interleukin-1 receptor antagonist from human mononuclear cells. Immunology 88:355–362CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Park YH, Wood G, Kastner DL (2016) Pyrin inflammasome activation and RhoA signaling in the autoinflammatory diseases FMF and HIDS. Nat Immunol 17:914–921CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Netea MG, Nold-Petry CA, Nold MF et al (2009) Differential requirement for the activation of the inflammasome for processing and release of IL-1βin monocytes and macrophages. Blood 113:2324–2335CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Hoffman HM, Mueller JL, Broide DH, Wanderer AA, Kolodner RD (2001) Mutation of a new gene encoding a putative pyrinlike protein causes familial cold autoinflammatory syndrome and Muckle-Wells syndrome. Nat Genet 29:301–305CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol Cell 10:417–426CrossRefPubMedGoogle Scholar
  29. 29.
    Kanneganti TD, Lamkanfi M, Nunez G (2007) Intracellular NOD-like receptors in host defense and disease. Immunity 27:549–559CrossRefPubMedGoogle Scholar
  30. 30.
    Mariathasan S, Newton K, Monack DM et al (2004) Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430:213–218CrossRefPubMedGoogle Scholar
  31. 31.
    Aksentijevich I, Masters SL, Ferguson PJ et al (2009) An autoinflammatory disease with deficiency of the interleukin-1-receptor antagonist. N Engl J Med 360:2426–2437CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Reddy S, Jia S, Geoffrey R et al (2009) An autoinflammatory disease due to homozygous deletion of the IL1RN locus. N. Engl. J Med 360:2438–2444Google Scholar
  33. 33.
    Jesus AA, Osman M, Silva CA et al (2011) A novel mutation of IL1RN in the deficiency of interleukin-1 receptor antagonist syndrome: description of two unrelated cases from Brazil. Arthritis Rheum 63:4007–4017CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Shi Y, Evans JE, Rock KL (2003) Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 425:516–521CrossRefPubMedGoogle Scholar
  35. 35.
    Broderick L, De Nardo D, Franklin BS, Hoffman HM, Latz E (2015) The inflammasomes and autoinflammatory syndromes. Annu Rev Pathol 10:395–424CrossRefPubMedGoogle Scholar
  36. 36.
    Martinon F, Pétrilli V, Mayor A, Tardivel A, Tschopp J (2006) Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440:237–224CrossRefPubMedGoogle Scholar
  37. 37.
    Schumacher HR Jr, Sundy JS et al (2012) Rilonacept (interleukin-1 Trap) in the prevention of acute gout flares during initiation of urate-lowering therapy: results of a phase II randomized, double-blind, placebo-controlled trial. Arthritis Rheum 64:876–984CrossRefPubMedGoogle Scholar
  38. 38.
    So A, De Smedt T, Revaz S, Tschopp J (2007) A pilot study of IL-1 inhibition by anakinra in acute gout. Arthritis Res Ther 9(2):R28CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Latz E, Xiao TS, Stutz A (2013) Activation and regulation of the inflammasomes. Nat Rev Immunol 13:397–411CrossRefPubMedGoogle Scholar
  40. 40.
    Younis AA (2017) Crowned dens syndrome as a cause of acute neck pain: a case report and review of the literature. Mediterr J Rheumatol 28:53–57Google Scholar
  41. 41.
    Gibilisco PA, Schumacher McAllister MJ, Chemaly M, Eakin AJ, Gibson DS, McGilligan VE (2018) NLRP3 as a potentially novel biomarker for the management of osteoarthritis. Osteoarthr Cartil 26:612–619CrossRefGoogle Scholar
  42. 42.
    Konttinen YT, Sillat T, Barreto G, Ainola M, Nordstro m DCE (2012) Osteoarthritis as an autoinflammatory disease caused by chondrocyte-mediated inflammatory responses. Arthritis Rheum 64:613–616CrossRefPubMedGoogle Scholar
  43. 43.
    Conway R, McCarthy GM (2018) Calcium-containing crystals and osteoarthritis: an unhealthy alliance. Curr Rheumatol Rep 20:13CrossRefPubMedGoogle Scholar
  44. 44.
    Clavijo-Cornejo D, Martinez-Flores K, Silva-Luna K et al (2016) The overexpression of NALP3 inflammasome in knee osteoarthritis is associated with synovial membrane prolidase and NADPH oxidase 2. Oxid Med Cell Longev.  https://doi.org/10.1155/2017/7847602 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Dimitroulas T, Lambe T, Klocke R, Kitas GD, Duarte RV (2017) Biologic drugs as analgesics for the management of osteoarthritis. Semin Arthritis Rheum 46:687–691CrossRefPubMedGoogle Scholar
  46. 46.
    De Santis M, Selmi C (2015) The autoinflammatory side of systemic sclerosis. Isr Med Assoc J 17:47–49PubMedGoogle Scholar
  47. 47.
    Martinez-Godinez MA, Cruz-Dominguez MP, Jara LJ et al (2015) Expression of NLRP3 in ammasome, cytokines, and vascular mediators in the skin of systemic sclerosis patients. Isr Med Assoc J 17:5–10PubMedGoogle Scholar
  48. 48.
    Artlett CM, Sassi-Gaha S, Rieger JL, Boesteanu AC, Feghali-Bostwick CA, Katsikis PD (2011) The inflammasome activating caspase 1 mediates fibrosis and myofibroblast differentiation in systemic sclerosis. Arthritis Rheum 63:3563–3574CrossRefPubMedGoogle Scholar
  49. 49.
    Bhattacharyya S, Varga J (2015) Emerging roles of innate immune signaling and toll-like receptors in fibrosis and systemic sclerosis. Curr Rheumtol Rep 17:474Google Scholar
  50. 50.
    Broen JC, Bossini-Castillo L, van Bon L et al (2012) A rare polymorphism in the gene for toll-like receptor 2 is associated with systemic sclerosis phenotype and increases the production of inflammatory mediators. Arthritis Rheum 64:264–271CrossRefPubMedGoogle Scholar
  51. 51.
    Agarwal SK, Wu M, Livingston CK et al (2011) Toll-like receptor 3 upregulation by type I interferon in healthy and scleroderma dermal fibroblasts. Arthritis Res Ther 13:R3CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Fang F, Ooka K, Sun X et al (2013) A synthetic TLR3 ligand mitigates profibrotic fibroblast responses by inducing autocrine IFN signaling. J Immunol 191:2956–2966CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    O’Reilly S, Cant R, Ciechomska M et al (2014) Serum amyloid A induces interleukin-6 in dermal fibroblasts via Toll-like receptor 2, interleukin-1 receptor-associated kinase 4 and nuclear factor-κB. Immunology 143:331–340CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Dimitroulas T, Daoussis D, Garyfallos A, Sfikakis PP, Kitas GD (2015) Molecular and cellular pathways as treatment targets for biologic therapies in systemic sclerosis. Curr Med Chem 22:1943–1955CrossRefPubMedGoogle Scholar
  55. 55.
    Takemura Y, Ouchi N, Shibata R et al (2007) Adiponectin modulates inflammatory reactions via calreticulin receptor-dependent clearance of early apoptotic bodies. J Clin Investig 117:375–386CrossRefPubMedGoogle Scholar
  56. 56.
    Kahlenberg JM, Thacker SG, Berthier CC, Cohen CD, Kretzler M, Kaplan MJ (2011) Inflammasome activation of IL-18 results in endothelial progenitor cell dysfunction in systemic lupus erythematosus. J Immunol 187:6143–6156CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Hu D, Liu X, Chen S, Bao C (2010) Expressions of IL-18 and its binding protein in peripheral blood leukocytes and kidney tissues of lupus nephritis patients. Clin Rheumatol 29:717–721CrossRefPubMedGoogle Scholar
  58. 58.
    Calvani N, Richards HB, Tucci M, Pannarale G, Silvestris F (2004) Up-regulation of IL-18 and predominance of a Th1 immune response is a hallmark of lupus nephritis. Clin Exp Immunol 138:171–178CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Yang CA, Huang ST, Chiang BL (2015) Sex-dependent differential activation of NLRP3 and AIM2 inflammasomes in SLE macrophages. Rheumatology 54:324–331CrossRefPubMedGoogle Scholar
  60. 60.
    Majai G, Kiss E, Tarr T, Zahuczky G, Hartman Z, Szegedi G, Fésüs L (2014) Decreased apoptophagocytic gene expression in the macrophages of systemic lupus erythematosus patients. Lupus 23:133–145CrossRefPubMedGoogle Scholar
  61. 61.
    Saitoh T, Fujita N, Jang MH et al (2008) Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature 456:264–268CrossRefPubMedGoogle Scholar
  62. 62.
    Sun Q, Fan J, Billiar TR, Scott MJ (2017) Inflammasome and autophagy regulation—a two-way street. Mol Med 23:188–195CrossRefPubMedGoogle Scholar
  63. 63.
    Yang Q, Yu C, Yang Z et al (2014) Deregulated NLRP3 and NLRP1 inflammasomes and their correlations with disease activity in systemic lupus erythematosus. J Rheumatol 41:444–4452CrossRefPubMedGoogle Scholar
  64. 64.
    Guarda G, Dostert C, Staehli F et al (2009) T cells dampen innate immune responses through inhibition of NLRP1 and NLRP3 inflammasomes. Nature 460:269–273CrossRefPubMedGoogle Scholar
  65. 65.
    Joosten LA, Helsen MM, Saxne T et al (1999) IL-1 alpha beta blockade prevents cartilage and bone destruction in murine type II collagen-induced arthritis, whereas TNF-alpha blockade only ameliorates joint inflammation. J Immunol 163:5049–5055PubMedGoogle Scholar
  66. 66.
    Brennan FM, McInnes IB (2008) Evidence that cytokines play a role in rheumatoid arthritis. J Clin Investig 118:3537–3545CrossRefPubMedGoogle Scholar
  67. 67.
    McInnes IB, O’Dell JR (2010) State-of-the-art: rheumatoid arthritis. Ann Rheum Dis 69:1898–1906CrossRefPubMedGoogle Scholar
  68. 68.
    Sacre SM, Andreakos E, Kiriakidis S et al (2007) The Toll-like receptor adaptor proteins MyD88 and Mal/TIRAP contribute to the inflammatory and destructive processes in a human model of rheumatoid arthritis. Am J Pathol 170:518–525CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Hu F, Li Y, Zheng L et al (2014) Toll-like receptors expressed by synovial fibroblasts perpetuate Th1 and th17 cell responses in rheumatoid arthritis. PLoS ONE 9:e100266CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Folco EJ, Sukhova GK, Quillard T, Libby P (2014) Moderate hypoxia potentiates interleukin-1β production in activated human macrophages. Circ Res 115:875–883CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Mathews RJ, Robinson JI, Battellino M et al (2014) Evidence of NLRP3-inflammasome activation in rheumatoid arthritis (RA); genetic variants within the NLRP3-inflammasome complex in relation to susceptibility to RA and response to anti-TNF treatment. Ann Rheum Dis 73:1202–1210CrossRefPubMedGoogle Scholar
  72. 72.
    Sode J, Vogel U, Bank S et al (2014) Anti-TNF treatment response in rheumatoid arthritis patients is associated with genetic variation in the NLRP3-inflammasome. PLoS ONE 9:e100361CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Fourth Department of Internal Medicine, Hippokration University Hospital, Medical SchoolAristotle University of ThessalonikiThessalonikiGreece
  2. 2.Arthritis Research UK Centre for EpidemiologyUniversity of ManchesterManchesterUK

Personalised recommendations