Distinct associations of the Saccharomyces cerevisiae Rad9 protein link Mac1-regulated transcription to DNA repair

  • Kalliopi Gkouskou
  • George S. Fragiadakis
  • Alexandra Voutsina
  • Despina AlexandrakiEmail author
Original Article


While it is known that ScRad9 DNA damage checkpoint protein is recruited to damaged DNA by recognizing specific histone modifications, here we report a different way of Rad9 recruitment on chromatin under non DNA damaging conditions. We found Rad9 to bind directly with the copper-modulated transcriptional activator Mac1, suppressing both its DNA binding and transactivation functions. Rad9 was recruited to active Mac1-target promoters (CTR1, FRE1) and along CTR1 coding region following the association pattern of RNA polymerase (Pol) II. Hir1 histone chaperone also interacted directly with Rad9 and was partly required for its localization throughout CTR1 gene. Moreover, Mac1-dependent transcriptional initiation was necessary and sufficient for Rad9 recruitment to the heterologous ACT1 coding region. In addition to Rad9, Rad53 kinase also localized to CTR1 coding region in a Rad9-dependent manner. Our data provide an example of a yeast DNA-binding transcriptional activator that interacts directly with a DNA damage checkpoint protein in vivo and is functionally restrained by this protein, suggesting a new role for Rad9 in connecting factors of the transcription machinery with the DNA repair pathway under unchallenged conditions.


Checkpoint protein recruitment Mac1 Metal-regulated transcription Rad53 Rad9 Hir1 



We thank Iannis Talianidis and the late George Thireos for materials and helpful suggestions, Dennis Winge for Mac1up-expressing plasmids, the late Yannis Papanikolau and Androniki Kretsovali for advice on protein methodologies, Ioannis Kagiampakis and Christos Andreadis for communicating experimental data, and George A. Garinis for critical reading of the manuscript. Dedicated to the late Alexandros Argyrokastritis.


This work was supported by the Greek Ministry of Development-GSRT (IMBB funding and PENED grant 01ED119) and Greek Ministry of Education (PYTHAGORAS grant 89184).


  1. Aboussekhra A, Vialard JE, Morrison DE, de la Torre-Ruiz MA, Cernakova L, Fabre F, Lowndes NF (1996) A novel role for the budding yeast RAD9 checkpoint gene in DNA damage-dependent transcription. EMBO J 15:3912–3922PubMedPubMedCentralCrossRefGoogle Scholar
  2. Al-Moghrabi NM, Al-Sharif IS, Aboussekhra A (2001) The Saccharomyces cerevisiae RAD9 cell cycle checkpoint gene is required for optimal repair of UV-induced pyrimidine dimers in both G(1) and G(2)/M phases of the cell cycle. Nucleic Acids Res 29:2020–2025PubMedPubMedCentralCrossRefGoogle Scholar
  3. Al-Moghrabi NM, Al-Sharif IS, Aboussekhra A (2009) The RAD9-dependent gene trans-activation is required for excision repair of active genes but not for repair of non-transcribed DNA. Mutat Res 663:60–68PubMedCrossRefPubMedCentralGoogle Scholar
  4. Alpha-Bazin B, Lorphelin A, Nozerand N, Charier G, Marchetti C, Berenguer F, Couprie J, Gilquin B, Zinn-Justin S, Quemeneur E (2005) Boundaries and physical characterization of a new domain shared between mammalian 53BP1 and yeast Rad9 checkpoint proteins. Protein Sci 14:1827–1839PubMedPubMedCentralCrossRefGoogle Scholar
  5. Andreadis C, Nikolaou C, Fragiadakis GS, Tsiliki G, Alexandraki D (2014) Rad9 interacts with Aft1 to facilitate genome surveillance in fragile genomic sites under non-DNA damage-inducing conditions in S. cerevisiae. Nucleic Acids Res 42:12650–12667PubMedPubMedCentralCrossRefGoogle Scholar
  6. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1987) Current protocols in molecular biology. Greene Publishing Associates, New YorkGoogle Scholar
  7. Bantele SCS, Pfander B (2019) Quantitative mechanisms of DNA damage sensing and signaling. Curr Genet 128(1):1–4Google Scholar
  8. Bao Y, Shen X (2007) Chromatin remodeling in DNA double-strand break repair. Curr Opin Genet Dev 17:126–131PubMedCrossRefPubMedCentralGoogle Scholar
  9. Bastos de Oliveira FM, Kim D, Cussiol JR, Das J, Jeong MC, Doerfler L, Schmidt KH, Yu H, Smolka MB (2015) Phosphoproteomics reveals distinct modes of Mec1/ATR signaling during DNA replication. Mol Cell 57:1124–1132PubMedCrossRefPubMedCentralGoogle Scholar
  10. Becker DM, Fikes JD, Guarente L (1991) A cDNA encoding a human CCAAT-binding protein cloned by functional complementation in yeast. Proc Natl Acad Sci USA 88:1968–1972PubMedCrossRefPubMedCentralGoogle Scholar
  11. Bilsland E, Molin C, Swaminathan S, Ramne A, Sunnerhagen P (2004) Rck1 and Rck2 MAPKAP kinases and the HOG pathway are required for oxidative stress resistance. Mol Microbiol 53:1743–1756PubMedCrossRefPubMedCentralGoogle Scholar
  12. Blankley RT, Lydall D (2004) A domain of Rad9 specifically required for activation of Chk1 in budding yeast. J Cell Sci 117:601–608PubMedCrossRefPubMedCentralGoogle Scholar
  13. Bochar DA, Wang L, Beniya H, Kinev A, Xue Y, Lane WS, Wang W, Kashanchi F, Shiekhattar R (2000) BRCA1 is associated with a human SWI/SNF-related complex: linking chromatin remodeling to breast cancer. Cell 102:257–265PubMedCrossRefPubMedCentralGoogle Scholar
  14. Bonilla CY, Melo JA, Toczyski DP (2008) Colocalization of sensors is sufficient to activate the DNA damage checkpoint in the absence of damage. Mol Cell 30:267–276PubMedPubMedCentralCrossRefGoogle Scholar
  15. Botchkarev VV Jr, Haber JE (2018) Functions and regulation of the Polo-like kinase Cdc5 in the absence and presence of DNA damage. Curr Genet 64:87–96PubMedCrossRefPubMedCentralGoogle Scholar
  16. Bothmer A, Robbiani DF, Di Virgilio M, Bunting SF, Klein IA, Feldhahn N, Barlow J, Chen HT, Bosque D, Callen E, Nussenzweig A, Nussenzweig MC (2011) Regulation of DNA end joining, resection, and immunoglobulin class switch recombination by 53BP1. Mol Cell 42:319–329PubMedPubMedCentralCrossRefGoogle Scholar
  17. Chai YL, Cui J, Shao N, Shyam E, Reddy P, Rao VN (1999) The second BRCT domain of BRCA1 proteins interacts with p53 and stimulates transcription from the p21WAF1/CIP1 promoter. Oncogene 18:263–268PubMedCrossRefPubMedCentralGoogle Scholar
  18. Ciccia A, Elledge SJ (2010) The DNA damage response: making it safe to play with knives. Mol Cell 40:179–204PubMedPubMedCentralCrossRefGoogle Scholar
  19. Corcoles-Saez I, Dong K, Cha RS (2019) Versatility of the Mec1(ATM/ATR) signaling network in mediating resistance to replication, genotoxic, and proteotoxic stresses. Curr Genet 65:657–661PubMedPubMedCentralCrossRefGoogle Scholar
  20. Coutelier H, Xu Z (2019) Adaptation in replicative senescence: a risky business. Curr Genet 65:711–716PubMedCrossRefPubMedCentralGoogle Scholar
  21. Cuella-Martin R, Oliveira C, Lockstone HE, Snellenberg S, Grolmusova N, Chapman JR (2016) 53BP1 integrates DNA repair and p53-dependent cell fate decisions via distinct mechanisms. Mol Cell 64:51–64PubMedPubMedCentralCrossRefGoogle Scholar
  22. Derbyshire DJ, Basu BP, Serpell LC, Joo WS, Date T, Iwabuchi K, Doherty AJ (2002) Crystal structure of human 53BP1 BRCT domains bound to p53 tumour suppressor. EMBO J 21:3863–3872PubMedPubMedCentralCrossRefGoogle Scholar
  23. DiTullio RA Jr, Mochan TA, Venere M, Bartkova J, Sehested M, Bartek J, Halazonetis TD (2002) 53BP1 functions in an ATM-dependent checkpoint pathway that is constitutively activated in human cancer. Nat Cell Biol 4:998–1002PubMedCrossRefPubMedCentralGoogle Scholar
  24. Dohrmann PR, Sclafani RA (2006) Novel role for checkpoint Rad53 protein kinase in the initiation of chromosomal DNA replication in Saccharomyces cerevisiae. Genetics 174:87–99PubMedPubMedCentralCrossRefGoogle Scholar
  25. Emili A (1998) MEC1-dependent phosphorylation of Rad9p in response to DNA damage. Mol Cell 2:183–189PubMedCrossRefPubMedCentralGoogle Scholar
  26. Emili A, Schieltz DM, Yates JR 3rd, Hartwell LH (2001) Dynamic interaction of DNA damage checkpoint protein Rad53 with chromatin assembly factor Asf1. Mol Cell 7:13–20PubMedCrossRefPubMedCentralGoogle Scholar
  27. Fasullo M, Bennett T, AhChing P, Koudelik J (1998) The Saccharomyces cerevisiae RAD9 checkpoint reduces the DNA damage-associated stimulation of directed translocations. Mol Cell Biol 18:1190–1200PubMedPubMedCentralCrossRefGoogle Scholar
  28. Fernandez-Capetillo O, Chen HT, Celeste A, Ward I, Romanienko PJ, Morales JC, Naka K, Xia Z, Camerini-Otero RD, Motoyama N, Carpenter PB, Bonner WM, Chen J, Nussenzweig A (2002) DNA damage-induced G2-M checkpoint activation by histone H2AX and 53BP1. Nat Cell Biol 4:993–997PubMedCrossRefPubMedCentralGoogle Scholar
  29. Finn K, Lowndes NF, Grenon M (2012) Eukaryotic DNA damage checkpoint activation in response to double-strand breaks. Cell Mol Life Sci 69:1447–1473PubMedCrossRefPubMedCentralGoogle Scholar
  30. FitzGerald JE, Grenon M, Lowndes NF (2009) 53BP1: function and mechanisms of focal recruitment. Biochem Soc Trans 37:897–904PubMedCrossRefPubMedCentralGoogle Scholar
  31. Flattery-O’Brien JA, Dawes IW (1998) Hydrogen peroxide causes RAD9-dependent cell cycle arrest in G2 in Saccharomyces cerevisiae whereas menadione causes G1 arrest independent of RAD9 function. J Biol Chem 273:8564–8571PubMedCrossRefPubMedCentralGoogle Scholar
  32. Formosa T, Ruone S, Adams MD, Olsen AE, Eriksson P, Yu Y, Rhoades AR, Kaufman PD, Stillman DJ (2002) Defects in SPT16 or POB3 (yFACT) in Saccharomyces cerevisiae cause dependence on the Hir/Hpc pathway: polymerase passage may degrade chromatin structure. Genetics 162:1557–1571PubMedPubMedCentralGoogle Scholar
  33. Georgakopoulos T, Koutroubas G, Vakonakis I, Tzermia M, Prokova V, Voutsina A, Alexandraki D (2001) Functional analysis of the Saccharomyces cerevisiae YFR021w/YGR223c/YPL100w ORF family suggests relations to mitochondrial/peroxisomal functions and amino acid signalling pathways. Yeast 18:1155–1171PubMedCrossRefPubMedCentralGoogle Scholar
  34. Georgatsou E, Alexandraki D (1999) Regulated expression of the Saccharomyces cerevisiae Fre1p/Fre2p Fe/Cu reductase related genes. Yeast 15:573–584PubMedCrossRefPubMedCentralGoogle Scholar
  35. Georgatsou E, Mavrogiannis LA, Fragiadakis GS, Alexandraki D (1997) The yeast Fre1p/Fre2p cupric reductases facilitate copper uptake and are regulated by the copper-modulated Mac1p activator. J Biol Chem 272:13786–13792PubMedCrossRefPubMedCentralGoogle Scholar
  36. Gerton JL, DeRisi J, Shroff R, Lichten M, Brown PO, Petes TD (2000) Global mapping of meiotic recombination hotspots and coldspots in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci USA 97:11383–11390PubMedCrossRefPubMedCentralGoogle Scholar
  37. Giannattasio M, Sabbioneda S, Minuzzo M, Plevani P, Muzi-Falconi M (2003) Correlation between checkpoint activation and in vivo assembly of the yeast checkpoint complex Rad17-Mec3-Ddc1. J Biol Chem 278:22303–22308PubMedCrossRefPubMedCentralGoogle Scholar
  38. Gilbert CS, Green CM, Lowndes NF (2001) Budding yeast Rad9 is an ATP-dependent Rad53 activating machine. Mol Cell 8:129–136PubMedCrossRefPubMedCentralGoogle Scholar
  39. Gilbert CS, van den Bosch M, Green CM, Vialard JE, Grenon M, Erdjument-Bromage H, Tempst P, Lowndes NF (2003) The budding yeast Rad9 checkpoint complex: chaperone proteins are required for its function. EMBO Rep 4:953–958PubMedPubMedCentralCrossRefGoogle Scholar
  40. Graden JA, Winge DR (1997) Copper-mediated repression of the activation domain in the yeast Mac1p transcription factor. Proc Natl Acad Sci USA 94:5550–5555PubMedCrossRefPubMedCentralGoogle Scholar
  41. Granata M, Lazzaro F, Novarina D, Panigada D, Puddu F, Abreu CM, Kumar R, Grenon M, Lowndes NF, Plevani P, Muzi-Falconi M (2010) Dynamics of Rad9 chromatin binding and checkpoint function are mediated by its dimerization and are cell cycle-regulated by CDK1 activity. PLoS Genet 6:e1001047PubMedPubMedCentralCrossRefGoogle Scholar
  42. Green EM, Antczak AJ, Bailey AO, Franco AA, Wu KJ, Yates JR 3rd, Kaufman PD (2005) Replication-independent histone deposition by the HIR complex and Asf1. Curr Biol 15:2044–2049PubMedPubMedCentralCrossRefGoogle Scholar
  43. Gross C, Kelleher M, Iyer VR, Brown PO, Winge DR (2000) Identification of the copper regulon in Saccharomyces cerevisiae by DNA microarrays. J Biol Chem 275:32310–32316PubMedCrossRefPubMedCentralGoogle Scholar
  44. Gunjan A, Verreault A (2003) A Rad53 kinase-dependent surveillance mechanism that regulates histone protein levels in S. cerevisiae. Cell 115:537–549PubMedCrossRefPubMedCentralGoogle Scholar
  45. Hammet A, Magill C, Heierhorst J, Jackson SP (2007) Rad9 BRCT domain interaction with phosphorylated H2AX regulates the G1 checkpoint in budding yeast. EMBO Rep 8:851–857PubMedPubMedCentralCrossRefGoogle Scholar
  46. Hanway D, Chin JK, Xia G, Oshiro G, Winzeler EA, Romesberg FE (2002) Previously uncharacterized genes in the UV- and MMS-induced DNA damage response in yeast. Proc Natl Acad Sci USA 99:10605–10610PubMedCrossRefPubMedCentralGoogle Scholar
  47. Harrison JC, Haber JE (2006) Surviving the breakup: the DNA damage checkpoint. Annu Rev Genet 40:209–235PubMedCrossRefPubMedCentralGoogle Scholar
  48. Heredia J, Crooks M, Zhu Z (2001) Phosphorylation and Cu + coordination-dependent DNA binding of the transcription factor Mac1p in the regulation of copper transport. J Biol Chem 276:8793–8797PubMedCrossRefPubMedCentralGoogle Scholar
  49. Hill SJ, Rolland T, Adelmant G, Xia X, Owen MS, Dricot A, Zack TI, Sahni N, Jacob Y, Hao T, McKinney KM, Clark AP, Reyon D, Tsai SQ, Joung JK, Beroukhim R, Marto JA, Vidal M, Gaudet S, Hill DE et al (2014) Systematic screening reveals a role for BRCA1 in the response to transcription-associated DNA damage. Genes Dev 28:1957–1975PubMedPubMedCentralCrossRefGoogle Scholar
  50. Huyen Y, Zgheib O, Ditullio RA Jr, Gorgoulis VG, Zacharatos P, Petty TJ, Sheston EA, Mellert HS, Stavridi ES, Halazonetis TD (2004) Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature 432:406–411PubMedCrossRefPubMedCentralGoogle Scholar
  51. Jensen LT, Winge DR (1998) Identification of a copper-induced intramolecular interaction in the transcription factor Mac1 from Saccharomyces cerevisiae. EMBO J 17:5400–5408PubMedPubMedCentralCrossRefGoogle Scholar
  52. Joo WS, Jeffrey PD, Cantor SB, Finnin MS, Livingston DM, Pavletich NP (2002) Structure of the 53BP1 BRCT region bound to p53 and its comparison to the Brca1 BRCT structure. Genes Dev 16:583–593PubMedPubMedCentralCrossRefGoogle Scholar
  53. Joshi A, Serpe M, Kosman DJ (1999) Evidence for (Mac1p)2.DNA ternary complex formation in Mac1p-dependent transactivation at the CTR1 promoter. J Biol Chem 274:218–226PubMedCrossRefPubMedCentralGoogle Scholar
  54. Kilkenny ML, Dore AS, Roe SM, Nestoras K, Ho JC, Watts FZ, Pearl LH (2008) Structural and functional analysis of the Crb2-BRCT2 domain reveals distinct roles in checkpoint signaling and DNA damage repair. Genes Dev 22:2034–2047PubMedPubMedCentralCrossRefGoogle Scholar
  55. Kizer KO, Phatnani HP, Shibata Y, Hall H, Greenleaf AL, Strahl BD (2005) A novel domain in Set2 mediates RNA polymerase II interaction and couples histone H3 K36 methylation with transcript elongation. Mol Cell Biol 25:3305–3316PubMedPubMedCentralCrossRefGoogle Scholar
  56. Knop M, Siegers K, Pereira G, Zachariae W, Winsor B, Nasmyth K, Schiebel E (1999) Epitope tagging of yeast genes using a PCR-based strategy: more tags and improved practical routines. Yeast 15:963–972PubMedCrossRefPubMedCentralGoogle Scholar
  57. Komarnitsky P, Cho EJ, Buratowski S (2000) Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription. Genes Dev 14:2452–2460PubMedPubMedCentralCrossRefGoogle Scholar
  58. Krum SA, Miranda GA, Lin C, Lane TF (2003) BRCA1 associates with processive RNA polymerase II. J Biol Chem 278:52012–52020PubMedCrossRefPubMedCentralGoogle Scholar
  59. Kuo MH, Allis CD (1999) In vivo cross-linking and immunoprecipitation for studying dynamic protein:DNA associations in a chromatin environment. Methods 19:425–433PubMedCrossRefPubMedCentralGoogle Scholar
  60. Lancelot N, Charier G, Couprie J, Duband-Goulet I, Alpha-Bazin B, Quemeneur E, Ma E, Marsolier-Kergoat MC, Ropars V, Charbonnier JB, Miron S, Craescu CT, Callebaut I, Gilquin B, Zinn-Justin S (2007) The checkpoint Saccharomyces cerevisiae Rad9 protein contains a tandem tudor domain that recognizes DNA. Nucleic Acids Res 35:5898–5912PubMedPubMedCentralCrossRefGoogle Scholar
  61. Lane TF (2004) BRCA1 and transcription. Cancer Biol Ther 3:528–533PubMedCrossRefPubMedCentralGoogle Scholar
  62. Leadon SA, Lawrence DA (1992) Strand-selective repair of DNA damage in the yeast GAL7 gene requires RNA polymerase II. J Biol Chem 267:23175–23182PubMedPubMedCentralGoogle Scholar
  63. Leshets M, Ramamurthy D, Lisby M, Lehming N, Pines O (2018) Fumarase is involved in DNA double-strand break resection through a functional interaction with Sae2. Curr Genet 64:697–712PubMedCrossRefPubMedCentralGoogle Scholar
  64. Li J, Stern DF (2005) DNA damage regulates Chk2 association with chromatin. J Biol Chem 280:37948–37956PubMedCrossRefPubMedCentralGoogle Scholar
  65. Li J, Xu X (2016) DNA double-strand break repair: a tale of pathway choices. Acta Biochim Biophys Sin (Shanghai) 48:641–646CrossRefGoogle Scholar
  66. Liang B, Qiu J, Ratnakumar K, Laurent BC (2007) RSC functions as an early double-strand-break sensor in the cell’s response to DNA damage. Curr Biol 17:1432–1437PubMedPubMedCentralCrossRefGoogle Scholar
  67. Lisby M, Barlow JH, Burgess RC, Rothstein R (2004) Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins. Cell 118:699–713PubMedCrossRefPubMedCentralGoogle Scholar
  68. Longhese MP, Guerini I, Baldo V, Clerici M (2008) Surveillance mechanisms monitoring chromosome breaks during mitosis and meiosis. DNA Repair (Amst) 7:545–557CrossRefGoogle Scholar
  69. Ma JL, Lee SJ, Duong JK, Stern DF (2006) Activation of the checkpoint kinase Rad53 by the phosphatidyl inositol kinase-like kinase Mec1. J Biol Chem 281:3954–3963PubMedCrossRefPubMedCentralGoogle Scholar
  70. Marfella CG, Imbalzano AN (2007) The Chd family of chromatin remodelers. Mutat Res 618:30–40PubMedPubMedCentralCrossRefGoogle Scholar
  71. Millan-Zambrano G, Santos-Rosa H, Puddu F, Robson SC, Jackson SP, Kouzarides T (2018) Phosphorylation of histone H4T80 triggers DNA damage checkpoint recovery. Mol Cell 72(625–635):e4Google Scholar
  72. Mochan TA, Venere M, DiTullio RA Jr, Halazonetis TD (2004) 53BP1, an activator of ATM in response to DNA damage. DNA Repair (Amst) 3:945–952CrossRefGoogle Scholar
  73. Moriel-Carretero M, Pasero P, Pardo B (2019) DDR Inc., one business, two associates. Curr Genet 65:445–451PubMedCrossRefPubMedCentralGoogle Scholar
  74. Morris DP, Michelotti GA, Schwinn DA (2005) Evidence that phosphorylation of the RNA polymerase II carboxyl-terminal repeats is similar in yeast and humans. J Biol Chem 280:31368–31377PubMedPubMedCentralCrossRefGoogle Scholar
  75. Mousson F, Ochsenbein F, Mann C (2007) The histone chaperone Asf1 at the crossroads of chromatin and DNA checkpoint pathways. Chromosoma 116:79–93PubMedCrossRefPubMedCentralGoogle Scholar
  76. Mullan PB, Quinn JE, Harkin DP (2006) The role of BRCA1 in transcriptional regulation and cell cycle control. Oncogene 25:5854–5863PubMedCrossRefPubMedCentralGoogle Scholar
  77. Nair N, Shoaib M, Sorensen CS (2017) Chromatin dynamics in genome stability: roles in suppressing endogenous DNA damage and facilitating DNA repair. Int J Mol Sci 18:E1486PubMedCrossRefPubMedCentralGoogle Scholar
  78. Ng HH, Ciccone DN, Morshead KB, Oettinger MA, Struhl K (2003) Lysine-79 of histone H3 is hypomethylated at silenced loci in yeast and mammalian cells: a potential mechanism for position-effect variegation. Proc Natl Acad Sci USA 100:1820–1825PubMedCrossRefPubMedCentralGoogle Scholar
  79. O’Shaughnessy AM, Grenon M, Gilbert C, Toh GW, Green CM, Lowndes NF (2006) Multiple approaches to study S. cerevisiae Rad9, a prototypical checkpoint protein. Methods Enzymol 409:131–150PubMedCrossRefPubMedCentralGoogle Scholar
  80. Osley MA, Tsukuda T, Nickoloff JA (2007) ATP-dependent chromatin remodeling factors and DNA damage repair. Mutat Res 618:65–80PubMedPubMedCentralCrossRefGoogle Scholar
  81. Pan X, Ye P, Yuan DS, Wang X, Bader JS, Boeke JD (2006) A DNA integrity network in the yeast Saccharomyces cerevisiae. Cell 124:1069–1081PubMedCrossRefPubMedCentralGoogle Scholar
  82. Panier S, Boulton SJ (2014) Double-strand break repair: 53BP1 comes into focus. Nat Rev Mol Cell Biol 15:7–18PubMedCrossRefPubMedCentralGoogle Scholar
  83. Pardo B, Crabbe L, Pasero P (2017) Signaling pathways of replication stress in yeast. FEMS Yeast Res. CrossRefPubMedPubMedCentralGoogle Scholar
  84. Pfander B, Diffley JF (2011) Dpb11 coordinates Mec1 kinase activation with cell cycle-regulated Rad9 recruitment. EMBO J 30:4897–4907PubMedPubMedCentralCrossRefGoogle Scholar
  85. Sau S, Kupiec M (2019) A role for the yeast PCNA unloader Elg1 in eliciting the DNA damage checkpoint. Curr Genet. CrossRefPubMedPubMedCentralGoogle Scholar
  86. Schiestl RH, Reynolds P, Prakash S, Prakash L (1989) Cloning and sequence analysis of the Saccharomyces cerevisiae RAD9 gene and further evidence that its product is required for cell cycle arrest induced by DNA damage. Mol Cell Biol 9:1882–1896PubMedPubMedCentralCrossRefGoogle Scholar
  87. Schwabish MA, Struhl K (2006) Asf1 mediates histone eviction and deposition during elongation by RNA polymerase II. Mol Cell 22:415–422PubMedCrossRefPubMedCentralGoogle Scholar
  88. Scully R, Xie A, Nagaraju G (2004) Molecular functions of BRCA1 in the DNA damage response. Cancer Biol Ther 3:521–527PubMedCrossRefPubMedCentralGoogle Scholar
  89. Serpe M, Joshi A, Kosman DJ (1999) Structure-function analysis of the protein-binding domains of Mac1p, a copper-dependent transcriptional activator of copper uptake in Saccharomyces cerevisiae. J Biol Chem 274:29211–29219PubMedCrossRefPubMedCentralGoogle Scholar
  90. Sharma B, Preet Kaur R, Raut S, Munshi A (2018) BRCA1 mutation spectrum, functions, and therapeutic strategies: the story so far. Curr Probl Cancer 42:189–207PubMedCrossRefPubMedCentralGoogle Scholar
  91. Sharp JA, Rizki G, Kaufman PD (2005) Regulation of histone deposition proteins Asf1/Hir1 by multiple DNA damage checkpoint kinases in Saccharomyces cerevisiae. Genetics 171:885–899PubMedPubMedCentralCrossRefGoogle Scholar
  92. Siede W, Friedberg AS, Friedberg EC (1993) RAD9-dependent G1 arrest defines a second checkpoint for damaged DNA in the cell cycle of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 90:7985–7989PubMedCrossRefPubMedCentralGoogle Scholar
  93. Smolka MB, Chen SH, Maddox PS, Enserink JM, Albuquerque CP, Wei XX, Desai A, Kolodner RD, Zhou H (2006) An FHA domain-mediated protein interaction network of Rad53 reveals its role in polarized cell growth. J Cell Biol 175:743–753PubMedPubMedCentralCrossRefGoogle Scholar
  94. Smolka MB, Albuquerque CP, Chen SH, Zhou H (2007) Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases. Proc Natl Acad Sci USA 104:10364–10369PubMedCrossRefPubMedCentralGoogle Scholar
  95. Soulier J, Lowndes NF (1999) The BRCT domain of the S. cerevisiae checkpoint protein Rad9 mediates a Rad9-Rad9 interaction after DNA damage. Curr Biol 9:551–554PubMedCrossRefPubMedCentralGoogle Scholar
  96. Soutoglou E, Misteli T (2008) Activation of the cellular DNA damage response in the absence of DNA lesions. Science 320:1507–1510PubMedPubMedCentralCrossRefGoogle Scholar
  97. Stucki M, Jackson SP (2004) MDC1/NFBD1: a key regulator of the DNA damage response in higher eukaryotes. DNA Repair (Amst) 3:953–957CrossRefGoogle Scholar
  98. Sun Z, Hsiao J, Fay DS, Stern DF (1998) Rad53 FHA domain associated with phosphorylated Rad9 in the DNA damage checkpoint [see comments]. Science 281:272–274PubMedCrossRefPubMedCentralGoogle Scholar
  99. Sweeney FD, Yang F, Chi A, Shabanowitz J, Hunt DF, Durocher D (2005) Saccharomyces cerevisiae Rad9 acts as a Mec1 adaptor to allow Rad53 activation. Curr Biol 15:1364–1375PubMedCrossRefPubMedCentralGoogle Scholar
  100. Terleth C, Schenk P, Poot R, Brouwer J, van de Putte P (1990) Differential repair of UV damage in rad mutants of Saccharomyces cerevisiae: a possible function of G2 arrest upon UV irradiation [published erratum appears in Mol Cell Biol 1991 Feb; 11(2):1184]. Mol Cell Biol 10:4678–4684PubMedPubMedCentralCrossRefGoogle Scholar
  101. Toh GW, O’Shaughnessy AM, Jimeno S, Dobbie IM, Grenon M, Maffini S, O’Rorke A, Lowndes NF (2006) Histone H2A phosphorylation and H3 methylation are required for a novel Rad9 DSB repair function following checkpoint activation. DNA Repair (Amst) 5:693–703CrossRefGoogle Scholar
  102. Usui T, Foster SS, Petrini JH (2009) Maintenance of the DNA-damage checkpoint requires DNA-damage-induced mediator protein oligomerization. Mol Cell 33:147–159PubMedPubMedCentralCrossRefGoogle Scholar
  103. van den Bosch M, Lowndes NF (2004) Remodelling the Rad9 checkpoint complex: preparing Rad53 for action. Cell Cycle 3:119–122PubMedCrossRefPubMedCentralGoogle Scholar
  104. van Hoffen A, Natarajan AT, Mayne LV, van Zeeland AA, Mullenders LH, Venema J (1993) Deficient repair of the transcribed strand of active genes in Cockayne’s syndrome cells. Nucleic Acids Res 21:5890–5895PubMedPubMedCentralCrossRefGoogle Scholar
  105. Verstrepen KJ, Thevelein JM (2004) Controlled expression of homologous genes by genomic promoter replacement in the yeast Saccharomyces cerevisiae. Methods Mol Biol 267:259–266PubMedPubMedCentralGoogle Scholar
  106. Vialard JE, Gilbert CS, Green CM, Lowndes NF (1998) The budding yeast Rad9 checkpoint protein is subjected to Mec1/Tel1-dependent hyperphosphorylation and interacts with Rad53 after DNA damage. EMBO J 17:5679–5688PubMedPubMedCentralCrossRefGoogle Scholar
  107. Voutsina A, Fragiadakis GS, Boutla A, Alexandraki D (2001) The second cysteine-rich domain of Mac1p is a potent transactivator that modulates DNA binding efficiency and functionality of the protein. FEBS Lett 494:38–43PubMedCrossRefPubMedCentralGoogle Scholar
  108. Voutsina A, Fragiadakis GS, Gkouskou K, Alexandraki D (2019) Synergy of Hir1, Ssn6, and Snf2 global regulators is the functional determinant of a Mac1 transcriptional switch in S. cerevisiae copper homeostasis. Curr Genet 65:799–816PubMedCrossRefPubMedCentralGoogle Scholar
  109. Wan B, Wu J, Meng X, Lei M, Zhao X (2019) Molecular basis for control of diverse genome stability factors by the multi-BRCT Scaffold Rtt107. Mol Cell 75(238–251):e5Google Scholar
  110. Ward I, Kim JE, Minn K, Chini CC, Mer G, Chen J (2006) The tandem BRCT domain of 53BP1 is not required for its repair function. J Biol Chem 281:38472–38477PubMedPubMedCentralCrossRefGoogle Scholar
  111. Weber L, Byers B (1992) A RAD9-dependent checkpoint blocks meiosis of cdc13 yeast cells. Genetics 131:55–63PubMedPubMedCentralGoogle Scholar
  112. Weinert TA, Hartwell LH (1988) The RAD9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae. Science 241:317–322PubMedCrossRefPubMedCentralGoogle Scholar
  113. Weinert T, Hartwell L (1989) Control of G2 delay by the rad9 gene of Saccharomyces cerevisiae. J Cell Sci Suppl 12:145–148PubMedCrossRefPubMedCentralGoogle Scholar
  114. Weinert TA, Hartwell LH (1990) Characterization of RAD9 of Saccharomyces cerevisiae and evidence that its function acts posttranslationally in cell cycle arrest after DNA damage. Mol Cell Biol 10:6554–6564PubMedPubMedCentralCrossRefGoogle Scholar
  115. Williams RS, Lee MS, Hau DD, Glover JN (2004) Structural basis of phosphopeptide recognition by the BRCT domain of BRCA1. Nat Struct Mol Biol 11:519–525PubMedCrossRefPubMedCentralGoogle Scholar
  116. Wu J, Lu LY, Yu X (2010) The role of BRCA1 in DNA damage response. Protein Cell 1:117–123PubMedPubMedCentralCrossRefGoogle Scholar
  117. Wysocki R, Javaheri A, Allard S, Sha F, Cote J, Kron SJ (2005) Role of Dot1-dependent histone H3 methylation in G1 and S phase DNA damage checkpoint functions of Rad9. Mol Cell Biol 25:8430–8443PubMedPubMedCentralCrossRefGoogle Scholar
  118. Xia Z, Morales JC, Dunphy WG, Carpenter PB (2001) Negative cell cycle regulation and DNA damage-inducible phosphorylation of the BRCT protein 53BP1. J Biol Chem 276:2708–2718PubMedCrossRefPubMedCentralGoogle Scholar
  119. Yamaguchi-Iwai Y, Serpe M, Haile D, Yang W, Kosman DJ, Klausner RD, Dancis A (1997) Homeostatic regulation of copper uptake in yeast via direct binding of MAC1 protein to upstream regulatory sequences of FRE1 and CTR1. J Biol Chem 272:17711–17718PubMedCrossRefPubMedCentralGoogle Scholar
  120. Yu X, Chini CC, He M, Mer G, Chen J (2003) The BRCT domain is a phospho-protein binding domain. Science 302:639–642PubMedCrossRefPubMedCentralGoogle Scholar
  121. Zhang X, Li R (2018) BRCA1-dependent transcriptional regulation: implication in tissue-specific tumor suppression. Cancers (Basel) 10:E513CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Kalliopi Gkouskou
    • 1
    • 3
  • George S. Fragiadakis
    • 2
  • Alexandra Voutsina
    • 2
    • 4
  • Despina Alexandraki
    • 1
    • 2
    Email author
  1. 1.Department of BiologyUniversity of CreteHeraklionGreece
  2. 2.Institute of Molecular Biology & BiotechnologyFoundation for Research and Technology—HellasHeraklionGreece
  3. 3.EmbiodiagnosticsHeraklionGreece
  4. 4.Laboratory of Tumor Cell Biology, School of MedicineUniversity of CreteHeraklionGreece

Personalised recommendations