FgEaf6 regulates virulence, asexual/sexual development and conidial septation in Fusarium graminearum

  • Jiaxing Qin
  • Mengchun Wu
  • Shanyue ZhouEmail author
Original Article


Fusarium graminearum is a destructive fungal pathogen and a major cause of Fusarium head blight (FHB) which results in severe grain yield losses and quality reduction. Additionally, the pathogen produces mycotoxins during plant infection, which are harmful to the health of humans and livestock. As it is well known that lysine acetyltransferase complexes play important roles in pathogenesis, the roles of the Eaf6 homolog-containing complex have not been reported in fungal pathogen. In this study, a Eaf6 homolog FgEaf6 was identified in F. graminearum. To investigate the functions of FgEaf6, the gene was deleted using the split-marker method. ΔFgEaf6 mutant exhibited manifold defects in hyphal growth, conidial septation, asexual and sexual reproduction. Moreover, the virulence of the ΔFgEaf6 mutant was drastically reduced in both wheat heads and wheat coleoptiles. However, the FgEaf6 gene deletion did not impact DON production. An FgEaf6–gfp fusion localized to the nucleus and a conserved coiled-coil (C–C) domain was predicted in the sequence. Mutants with deletions in the C–C domain displayed similar defects during development and virulence as observed in the ΔFgEaf6 mutant. Moreover, the truncated gene was cytoplasm localized. In conclusion, the FgEaf6 encodes a nuclear protein, which plays key regulatory roles in hyphal growth, conidial septation, asexual/sexual reproduction, and the virulence of F. graminearum. The C–C is an indispensable domain in the gene. This is the first report on Eaf6 homolog functioning in virulence of fungal pathogen.


Fusarium graminearum C–C domain Asexual reproduction Sexual reproduction Virulence 



This study was supported by the open project of the State Key Laboratory of Crop Stress Biology for Arid Areas (CSBAA2016001).

Supplementary material

294_2019_1043_MOESM1_ESM.tif (385 kb)
Supplementary material 1 (TIFF 384 kb)


  1. Allard S, Utley RT, Savard J, Clarke A, Grant P, Brandl CJ, Pillus L, Workman JL, Cote J (1999) NuA4, an essential transcription adaptor/histone H4 acetyltransferase complex containing Esa1p and the ATM-related cofactor Tra1p. EMBO J 18:51085119CrossRefGoogle Scholar
  2. Bennett JW, Klich M (2003) Mycotoxins. Clin Microbiol Rev 16:497–516PubMedPubMedCentralCrossRefGoogle Scholar
  3. Bluhm BH, Zhao X, Flaherty JE, Xu JR, Dunkle L (2007) RAS2 regulates growth and pathogenesis in Fusarium graminearum. Mol Plant Microb Interact 20:627–636CrossRefGoogle Scholar
  4. Boudreault AA, Cronier D, Selleck W, Lacoste N, Utley RT, Allard S, Savard J, Lane WS, Tan S, Cote J (2003) Yeast enhancer of polycomb defines global Esa1-dependent acetylation of chromatin. Gene Dev 17:1415–1428PubMedCrossRefPubMedCentralGoogle Scholar
  5. Cánovas D, Marcos AT, Gacek A, Ramos MS, Gutiamosk G, Reyes-Domyesmos Y, Strauss J (2014) The histone acetyltransferase gene (gcn5) plays a central role in the regulation of Aspergillus asexual development. Genetics 197(4):1175–1189PubMedPubMedCentralCrossRefGoogle Scholar
  6. Cao S, He Y, Hao C, Xu Y, Zhang H, Wang C, Liu H, Xu JR (2017) RNA editing of the AMD1 gene is important for ascus maturation and ascospore discharge in Fusarium graminearum. Sci Rep 4617Google Scholar
  7. Catlett NL, Lee B, Yoder OC, Turgeon BG (2003) Split-marker recombination for efficient targeted deletion of fungal genes. Fungal Genet Newsl 50:9–11Google Scholar
  8. Cavinder B, Sikhakolli U, Fellows KM, Trail F (2012) Sexual development and ascospore discharge in Fusarium graminearum. J Vis Exp 61:e3895Google Scholar
  9. Chen CJ, Yu JJ, Bi CW, Zhang YN, Xu JQ, Wang JX, Zhou MG (2009) Mutations in a beta-tubulin confer resistance of Gibberella zeae to benzimidazole fungicides. Phytopatho 99(12):1403–1411CrossRefGoogle Scholar
  10. Chen A, Xie Q, Lin Y, Xu H, Shang W, Zhang J, Zhang D, Zheng W, Li G, Wang Z (2016) Septins are involved in nuclear division, morphogenesis and pathogenicity in Fusarium graminearum. Fungal Genet Biol 94:79–87PubMedCrossRefGoogle Scholar
  11. Chen Y, Wang J, Yang N, Wen Z, Sun X, Chai Y, Ma Z (2018) Wheat microbiome bacteria can reduce virulence of a plant pathogenic fungus by altering histone acetylation. Nat Commnun 9:3429CrossRefGoogle Scholar
  12. Chen L, Tong Q, Zhang C, Ding K (2019) The transcription factor FgCrz1A is essential for fungal development, virulence, deoxynivalenol biosynthesis and stress responses in Fusarium graminearum. Curr Genet 65:153. CrossRefPubMedGoogle Scholar
  13. Dichtl K, Helmschrott C, Dirr F, Wagener J (2012) Deciphering CWI signalling in Aspergillus fumigatus: identification and functional characterization of cell wall stress sensors and relevant rho GTPases. Mol Microbiol 83(3):506–519PubMedCrossRefGoogle Scholar
  14. Ding SL, Mehrabi R, Koten C, Kang ZS, Wei YD, Seong KY, Kistler HC, Xu JR (2009) Transducin beta-like gene FTL1 is essential for pathogenesis in Fusarium graminearum. Eukaryot Cell 8:867–876PubMedPubMedCentralCrossRefGoogle Scholar
  15. Doyon Y, Cote J (2004) The highly conserved and multifunctional NuA4 HAT complex. Curr Opin Genet Dev 14:147–154PubMedCrossRefGoogle Scholar
  16. Gale LR, Ward TJ, Balmas V, Kistler HC (2007) Population subdivision of Fusarium graminearum sensu stricto in the upper Midwestern United States. Phytopathology 97:1434–1439PubMedCrossRefGoogle Scholar
  17. Gardiner DM, Kazan K, Manners JM (2009) Novel genes of Fusarium graminearum that negatively regulate deoxynivalenol production and virulence. Mol Plant–Microbe Interact 22:1588–1600PubMedCrossRefGoogle Scholar
  18. Gomes CJ, Harman MW, Centuori SM, Wolgemuth CW, Martinez JD (2018) Measuring DNA content in live cells by fluorescence microscopy. Cell Div 13:6PubMedPubMedCentralCrossRefGoogle Scholar
  19. Gonzalez-Prieto JM, Rosas-Quijano R, Dominguez A, Ruiz-Herrera J (2014) The UmGcn5 gene encoding histone acetyltransferase from Ustilago maydis is involved in dimorphism and virulence. Fungal Genet Biol 71:86–95PubMedCrossRefGoogle Scholar
  20. Grant PA, Eberharter A, John S, Cook RG, Turner BM, Workman JL (1999) Expanded lysine acetylation specificity of Gcn5 in native complexes. J Biol Chem 274:5895–5900PubMedCrossRefGoogle Scholar
  21. Hou ZM, Xue CY, Peng YL, Katan T, Kistler HC, Xu JR (2002) A mitogen activated protein kinase gene (MGV1) in Fusarium graminearum is required for female fertility, heterokaryon formation, and plant infection. Mol Plant Microb Interact 15:1119–1127CrossRefGoogle Scholar
  22. Hou R, Jiang C, Zheng Q, Wang CF, Xu JR (2015) The AreA transcription factor mediates the regulation of deoxynivalenol (DON) synthesis by ammonium and cyclic adenosine monophosphate (cAMP) signalling in Fusarium graminearum. Mol Plant Pathol 16:987–999PubMedPubMedCentralCrossRefGoogle Scholar
  23. Howlett BJ, Jonkers W, Dong Y, Broz K, Kistler H (2012) The Wor1-like protein Fgp1 regulates pathogenicity, toxin synthesis and reproduction in the phytopathogenic fungus Fusarium graminearum. PLoS Pathog 8:e1002724CrossRefGoogle Scholar
  24. Hu S, Zhou X, Gu X, Cao S, Wang C, Xu J (2014) The cAMP-PKA pathway regulates growth, sexual and asexual differentiation, and pathogenesis in Fusarium graminearum. Mol Plant Microb Interact 27:557–566CrossRefGoogle Scholar
  25. Jain R, Valiante V, Remme N, Docimo T, Heinekamp T, Hertweck C, Gershenzon J, Haas H, Brakhage AA (2011) The map kinase mpka controls CWI, oxidative stress response, gliotoxin production and iron adaptation in Aspergillus fumigatus. Mol Microbiol 82(1):39–53PubMedPubMedCentralCrossRefGoogle Scholar
  26. Jeon J, Kwon S, Lee YH (2014) Histone acetylation in fungal pathogens of plants. Plant Pathol J 30:1–9PubMedPubMedCentralCrossRefGoogle Scholar
  27. Jiang J, Yun Y, Liu Y, Ma Z (2012) FgVELB is associated with vegetative differentiation, secondary metabolism and virulence in Fusarium graminearum. Fungal Genet Biol 49:653–662. PubMedCrossRefGoogle Scholar
  28. Jiang C, Zhang SJ, Zhang Q, Tao Y, Wang CF, Xu JR (2015) FgSKN7 and FgATF1 have overlapping functions in ascosporogenesis, pathogenesis and stress responses in Fusarium graminearum. Environ Microbiol 17:1245–1260PubMedCrossRefGoogle Scholar
  29. Jiang C, Zhang CK, Wu CL, Sun PP, Hou R, Liu HQ, Wang CF, Xu JR (2016) TRI6 and TRI10 play different roles in the regulation of deoxynivalenol (DON) production by cAMP signalling in Fusarium graminearum. Environ Microbiol 18:3689–3701PubMedCrossRefPubMedCentralGoogle Scholar
  30. Kong X, van Diepeningen AD, van der Lee TAJ, Waalwijk C, Xu J, Xu J, Zhang H, Chen W, Feng J (2018) The Fusarium graminearum histone acetyltransferases are important for morphogenesis, DON biosynthesis, and pathogenicity. Front Microbiol 9:654PubMedPubMedCentralCrossRefGoogle Scholar
  31. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evolut 33:1870-1874PubMedCrossRefPubMedCentralGoogle Scholar
  32. Li CH, Melesse M, Zhang SJ, Hao CF, Wang CF, Zhang HC, Hall MC, Xu JR (2015) FgCDC14 regulates cytokinesis, morphogenesis, and pathogenesis in Fusarium graminearum. Mol Microbiol 98:770–786PubMedCrossRefPubMedCentralGoogle Scholar
  33. Li C, Zhang Y, Wang H, Chen L, Zhang J, Sun M, Xu JR, Wang C (2018) The PKR regulatory subunit of protein kinase A (PKA) is involved in the regulation of growth, sexual and asexual development, and pathogenesis in Fusarium graminearum. Mol Plant Pathol 19(4):909–921PubMedCrossRefPubMedCentralGoogle Scholar
  34. Liu X, Yin YN, Wu JB, Jiang JH, Ma ZH (2010) Identification and characterization of carbendazim-resistant isolates of Gibberella zeae. Plant Dis 94:1137–1142PubMedCrossRefPubMedCentralGoogle Scholar
  35. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T) (-Delta Delta C) method. Methods 25:402–408PubMedPubMedCentralCrossRefGoogle Scholar
  36. Luo Y, Zhang H, Qi L, Zhang S, Zhou X, Zhang Y, Xu JR (2014) FgKin1 kinase localizes to the septal pore and plays a role in hyphal growth, ascospore germination, pathogenesis, and localization of Tub1 beta-tubulins in Fusarium graminearum. New Phytol 204:943–954PubMedCrossRefPubMedCentralGoogle Scholar
  37. Lupas AN, Gruber M (2005) The structure of alpha-helical coiled coils. Adv Protein Chem 70:37–78PubMedCrossRefGoogle Scholar
  38. Lv W, Wu J, Xu Z, Dai H, Ma Z, Wang Z (2019) The putative histone-like transcription factor fghltf1 is required for vegetative growth, sexual reproduction, and virulence in Fusarium graminearum. Curr Genet 65:981–994PubMedCrossRefGoogle Scholar
  39. Lysoe E, Seong KY, Kistler HC (2011) The transcriptome of Fusarium graminearum during the infection of wheat. Mol Plant Microbe Interact 24:995–1000PubMedCrossRefPubMedCentralGoogle Scholar
  40. Mäntylä E, Salokas K, Oittinen M, Aho V, Mäntysaari P, Palmujoki L, Kalliolinna O, Ihalainen TO, Niskanen EA, Timonen J, Viiri K, Vihinen-Ranta M (2016) Promoter targeted histone acetylation of chromatinized 1 parvoviral genome is essential for infection progress. J Virol. CrossRefPubMedPubMedCentralGoogle Scholar
  41. Mason JM, Arndt KM (2004) Coiled coil domains: stability, specificity, and biological implications. ChemBioChem 5:170–176PubMedCrossRefPubMedCentralGoogle Scholar
  42. McMullen M, Bergstrom G, Wolf ED, Dill-Macky R, Hershman D, Shaner G, Sanford DV (2012) A unified effort to fight an enemy of wheat and barley: fusarium Head Blight. Plant Dis 96(12):1712–1728PubMedCrossRefPubMedCentralGoogle Scholar
  43. Mitchell L, Lambert JP, Gerdes M, Al-Madhoun AS, Skerjanc IS, Figeys D, Baetz K (2008) Functional dissection of the NuA4 histone acetyltransferase reveals its role as a genetic hub and that eaf1 is essential for complex integrity. Mol Cell Biol 28(7):2244–2256PubMedPubMedCentralCrossRefGoogle Scholar
  44. Park A, Cho A, Seo J, Min K, Son H, Lee J, Choi G, Kim J, Lee Y (2012) Functional analyses of regulators of G protein signaling in Gibberella zeae. Fungal Genet Biol 49:511–520PubMedCrossRefPubMedCentralGoogle Scholar
  45. Proctor RH, Hohn TM, McCormick SP (1995) Reduced virulence of Gibberella zeae caused by disruption of a trichothecene toxin biosynthetic gene. Mol Plant Microb Interact 8:593–601CrossRefGoogle Scholar
  46. Ren J, Sang Y, Lu J, Yao YF (2017) Protein acetylation and its role in bacterial virulence. Trends Microbiol 25(9):768–779PubMedCrossRefPubMedCentralGoogle Scholar
  47. Rosler SM, Kramer K, Finkemeier I, Humpf HU, Tudzynski B (2016) The SAGA complex in the rice pathogen Fusarium fujikuroi: structure and functional characterization. Mol Microbiol 102:951–974PubMedCrossRefPubMedCentralGoogle Scholar
  48. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425Google Scholar
  49. Taverna SD, Ilin S, Rogers RS, Tanny JC, Lavender H, Li H, Baker L, Boyle J, Blair LP, Chait BT, Patel DJ, Aitchison JD, Tackett AJ, Allis CD (2007) Yng1 phd finger binding to h3 trimethylated at k4 promotes nua3 hat activity at k14 of h3 and transcription at a subset of targeted orfs. Mol Cell 24(5):785–796CrossRefGoogle Scholar
  50. Ullah M, Pelletier N, Xiao L, Zhao SP, Wang K, Degerny C, Tahmasebi S, Cayrou C, Doyon Y, Goh SL, Champagne N, Cote J, Yang XJ (2008) Molecular architecture of quartet MOZ/MORF histone acetyltransferase complexes. Mol Cell Biol 28:6828–6843PubMedPubMedCentralCrossRefGoogle Scholar
  51. Valiante V (2017) The CWI signaling pathway and its involvement in secondary metabolite production. J Fungi 3:68CrossRefGoogle Scholar
  52. Wang CF, Zhang SJ, Hou R, Zhao ZT, Zheng Q, Xu QJ, Zheng DW, Wang GH, Liu HQ, Gao XL, Ma JW, Kistler HC, Kang ZS, Xu JR (2011) Functional analysis of the kinome of the wheat scab fungus Fusarium graminearum. PLoS Pathog 7:e1002460PubMedPubMedCentralCrossRefGoogle Scholar
  53. Wang Y, Zhang X, Zhang H, Lu Y, Huang H, Dong X, Chen J, Dong J, Yang X, Hang H, Jiang T (2012) Coiled-coil networking shapes cell molecular machinery. Mol Biol Cell 23(19):3911–3922PubMedPubMedCentralCrossRefGoogle Scholar
  54. Watkins AM, Wuo MG, Arora PS (2015) Protein–protein interactions mediated by helical tertiary structure motifs. J Am Chem Soc 137:11622–11630PubMedPubMedCentralCrossRefGoogle Scholar
  55. Xie Q, Chen A, Zhang Y, Zhang C, Hu Y, Luo Z, Wang B, Yun Y, Zhou J, Li G, Wang Z (2019) ESCRT-III accessory proteins regulate fungal development and plant infection in Fusarium graminearum. Curr Genet 65:1041PubMedCrossRefGoogle Scholar
  56. Xu JR, Staiger CJ, Hamer JE (1998) Inactivation of the mitogen activated protein kinase MPS1 in the rice blast fungus prevents penetration of host cells but allows activation of plant defense responses. Proc Natl Acad Sci USA 95:12713–12718PubMedCrossRefGoogle Scholar
  57. Xu L, Wang M, Tang G, Ma Z, Shao W (2019) The endocytic cargo adaptor complex is required for cell-wall integrity via interacting with the sensor fgwsc2b in Fusarium graminearum. Curr Genet 65:1071–1080PubMedCrossRefGoogle Scholar
  58. Yang X-J (2015) MOZ and MORF acetyltransferases: molecular interaction, animal development and human disease. Biochim Biophys Acta (BBA) 1853(8):1818–1826CrossRefGoogle Scholar
  59. Yi X, Cheng J, Jiang Z, Hu W, Bie T, Gao D, Li D, Wu R, Li Y, Chen S, Cheng X, Liu J, Zhang Y, Cheng S (2018) Genetic analysis of fusarium head blight resistance in CIMMYT bread wheat line C615 using traditional and conditional QTL mapping. Front Plant Sci 9:573PubMedPubMedCentralCrossRefGoogle Scholar
  60. Yu F, Gu Q, Yun Y, Yin Y, Xu J, Shim W, Ma Z (2014) The TOR signaling pathway regulates vegetative development and virulence in Fusarium graminearum. New Phytol 203:219–232PubMedCrossRefGoogle Scholar
  61. Yuan S, Zhou M (2005) A major gene for resistance to carbendazim, in field isolates of Gibberella zeae. Can J Plant Path 27(1):58–63CrossRefGoogle Scholar
  62. Zhang Q, Akhberdi O, Wei D, Chen L, Liu H, Wang D, Hao X, Zhu X (2018) A MYST histone acetyltransferase modulates conidia development and secondary metabolism in Pestalotiopsis microspora, a taxol producer. Sci Rep 8(1):8199PubMedPubMedCentralCrossRefGoogle Scholar
  63. Zhang L, Liu C, Wang L, Sun S, Liu A, Liang Y, Yu J, Dong H (2019a) FgPEX1 and FgPEX10 are required for the maintenance of Woronin bodies and full virulence of Fusarium graminearum. Curr Genet. CrossRefPubMedGoogle Scholar
  64. Zhang L, Wang L, Liang Y, Yu J (2019b) FgPEX4 is involved in development, pathogenicity, and CWI in Fusarium graminearum. Curr Genet 65:747. CrossRefPubMedGoogle Scholar
  65. Zheng Q, Hou R, Zhang J, Ma J, Wu Z, Wang G, Wang C, Xu JR (2013) The MAT locus genes play different roles in sexual reproduction and pathogenesis in Fusarium graminearum. PLoS ONE 8:e66980PubMedPubMedCentralCrossRefGoogle Scholar
  66. Zhou S, Wu C (2019) Comparative acetylome analysis reveals the potential roles of lysine acetylation for DON biosynthesis in Fusarium graminearum. BMC Genom. CrossRefGoogle Scholar
  67. Zhou XY, Heyer C, Choi YE, Mehrabi R, Xu JR (2010) The CID1 cyclin C-like gene is important for plant infection in Fusarium graminearum. Fungal Genet Biol 47:143–151PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Plant Health and Medicine, The Key Lab of Integrated Crop Pests Management of Shandong ProvinceQingdao Agricultural UniversityChengyang, QingdaoChina
  2. 2.State Key Laboratory of Crop Stress Biology for Arid AerasNorthwest A&F UniversityYanglingChina

Personalised recommendations