A glance at genome editing with CRISPR–Cas9 technology

  • Antara Barman
  • Bornali Deb
  • Supriyo ChakrabortyEmail author


In recent years, CRISPR–Cas9 technology is widely acknowledged for having major applications in the field of biotechnology for editing genome of any organism to treat a variety of complex diseases and for other purposes. The acronym ‘CRISPR–Cas’ stands for clustered regularly interspaced short palindromic repeats–CRISPR-associated genes. This genetic organization exists in prokaryotic organisms and aids in the development of adaptive immunity since a protein called Cas9 nuclease cleaves specific target nucleic acid sequences from foreign invaders and destroys them. This mode of action has gained interest of the researchers to understand the insights of CRISPR–Cas9 technology. Here, we review that CRISPR–Cas organization is restricted to two classes and possesses different protein effectors. We also review the architecture of CRISPR loci, mechanism involved in genome editing by CRISPR–Cas9 technology and pathways of repairing double-strand breaks (DSBs) generated during the process of genome editing. This review also presents the strategies to increase the Cas9 specificity and reduce off-target activity to achieve accurate genome editing. Further, this review provides information on CRISPR tools used for genome editing, databases that are required for storing data on loci, strategies for delivering CRISPR–Cas9 to cells under study and applications of CRISPR–Cas9 to various fields. Safety measures are implemented on this technology to avoid misuse or ethical issues. We also discuss about the future aspects and potential applications of CRISPR–Cas9 technology required mainly for the treatment of dreadful diseases, crop improvement as well as genetic improvement in human.


CRISPR Cas9 Target Off-target Genome editing 



We are grateful to Assam University, Silchar, Assam, India, for providing necessary facilities for this review work.

Compliance with ethical standards

Conflict of interest

Authors declare no conflict of interest in this work.


  1. Abudayyeh OO et al (2016) C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353(6299):5573CrossRefGoogle Scholar
  2. Abudayyeh OO et al (2017) RNA targeting with CRISPR–Cas13. Nature 550(7675):280PubMedPubMedCentralCrossRefGoogle Scholar
  3. Adames NR, Gallegos JE, Peccoud J (2019) Yeast genetic interaction screens in the age of CRISPR/Cas. Curr Genet 65(2):307–327PubMedCrossRefPubMedCentralGoogle Scholar
  4. Adli M (2018) The CRISPR tool kit for genome editing and beyond. Nat Commun 9(1):1911PubMedPubMedCentralCrossRefGoogle Scholar
  5. Aman R et al (2018) RNA virus interference via CRISPR/Cas13a system in plants. Genome Biol 19(1):1PubMedPubMedCentralCrossRefGoogle Scholar
  6. Amitai G, Sorek R (2016) CRISPR–Cas adaptation: insights into the mechanism of action. Nat Rev Microbiol 14(2):67PubMedCrossRefPubMedCentralGoogle Scholar
  7. Anders C et al (2014) Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513(7519):569PubMedPubMedCentralCrossRefGoogle Scholar
  8. Annunziato S et al (2016) Modeling invasive lobular breast carcinoma by CRISPR/Cas9-mediated somatic genome editing of the mammary gland. Genes Dev 30(12):1470–1480PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bae S et al (2014) Microhomology-based choice of Cas9 nuclease target sites. Nat Methods 11(7):705PubMedCrossRefPubMedCentralGoogle Scholar
  10. Barrangou R (2015) Diversity of CRISPR–Cas immune systems and molecular machines. Genome Biol 16(1):247PubMedPubMedCentralCrossRefGoogle Scholar
  11. Barrangou R, Doudna JA (2016) Applications of CRISPR technologies in research and beyond. Nat Biotechnol 34(9):933PubMedCrossRefGoogle Scholar
  12. Barrangou R, Marraffini LA (2014) CRISPR–Cas systems: prokaryotes upgrade to adaptive immunity. Mol Cell 54(2):234–244PubMedPubMedCentralCrossRefGoogle Scholar
  13. Barrangou R et al (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315(5819):1709–1712PubMedCrossRefGoogle Scholar
  14. Beisel CL, Gomaa AA, Barrangou R (2014) A CRISPR design for next-generation antimicrobials. Genome Biol 15(11):516PubMedPubMedCentralCrossRefGoogle Scholar
  15. Blin K et al (2016) CRISPy-web: an online resource to design sgRNAs for CRISPR applications. Synth Syst Biotechnol 1(2):118–121PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bolotin A et al (2005) Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151(8):2551–2561PubMedCrossRefGoogle Scholar
  17. Bult CJ et al (1996) Complete genome sequence of the Methanogenic archaeon, Methanococcus jannaschii. Science 273(5278):1058–1073PubMedCrossRefGoogle Scholar
  18. Burger C, Nash K, Mandel RJ (2005) Recombinant adeno-associated viral vectors in the nervous system. Hum Gene Ther 16(7):781–791PubMedCrossRefGoogle Scholar
  19. Carroll D (2011) Genome engineering with zinc-finger nucleases. Genetics 188(4):773–782PubMedPubMedCentralCrossRefGoogle Scholar
  20. Charpentier E, Marraffini LA (2014) Harnessing CRISPR–Cas9 immunity for genetic engineering. Curr Opin Microbiol 19:114–119PubMedCrossRefGoogle Scholar
  21. Chen B et al (2013) Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155(7):1479–1491PubMedPubMedCentralCrossRefGoogle Scholar
  22. Chen C et al (2014) MLL3 is a haploinsufficient 7q tumor suppressor in acute myeloid leukemia. Cancer Cell 25(5):652–665PubMedPubMedCentralCrossRefGoogle Scholar
  23. Chen S et al (2015) Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell 160(6):1246–1260PubMedPubMedCentralCrossRefGoogle Scholar
  24. Chen JS et al (2017) Enhanced proofreading governs CRISPR–Cas9 targeting accuracy. Nature 550(7676):407PubMedPubMedCentralCrossRefGoogle Scholar
  25. Chiou S-H et al (2015) Pancreatic cancer modeling using retrograde viral vector delivery and in vivo CRISPR/Cas9-mediated somatic genome editing. Genes Dev 29(14):1576–1585PubMedPubMedCentralCrossRefGoogle Scholar
  26. Cho SW et al (2014) Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res 24(1):132–141PubMedPubMedCentralCrossRefGoogle Scholar
  27. Chow RD et al (2017) AAV-mediated direct in vivo CRISPR screen identifies functional suppressors in glioblastoma. Nat Neurosci 20(10):1329PubMedPubMedCentralCrossRefGoogle Scholar
  28. Chylinski K et al (2014) Classification and evolution of type II CRISPR–Cas systems. Nucleic Acids Res 42(10):6091–6105PubMedPubMedCentralCrossRefGoogle Scholar
  29. Clement K et al (2019) CRISPResso2 provides accurate and rapid genome editing sequence analysis. Nat Biotechnol 37(3):224PubMedPubMedCentralCrossRefGoogle Scholar
  30. Cobb RE, Wang Y, Zhao H (2014) High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synth Biol 4(6):723–728PubMedPubMedCentralCrossRefGoogle Scholar
  31. Cong L et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823PubMedPubMedCentralCrossRefGoogle Scholar
  32. Cox DBT, Platt RJ, Zhang F (2015) Therapeutic genome editing: prospects and challenges. Nat Med 21(2):121PubMedPubMedCentralCrossRefGoogle Scholar
  33. Cradick TJ et al (2014) COSMID: a web-based tool for identifying and validating CRISPR/Cas off-target sites. Mol Ther Nucleic Acids 3:e214PubMedPubMedCentralCrossRefGoogle Scholar
  34. Deans RM et al (2016) Parallel shRNA and CRISPR–Cas9 screens enable antiviral drug target identification. Nat Chem Biol 12(5):361PubMedPubMedCentralCrossRefGoogle Scholar
  35. Deltcheva E et al (2011) CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471(7340):602PubMedPubMedCentralCrossRefGoogle Scholar
  36. Deveau H et al (2008) Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J Bacteriol 190(4):1390–1400PubMedCrossRefPubMedCentralGoogle Scholar
  37. Deveau H, Garneau JE, Moineau S (2010) CRISPR/Cas system and its role in phage–bacteria interactions. Annu Rev Microbiol 64:475–493PubMedCrossRefPubMedCentralGoogle Scholar
  38. Dianov GL, Hübscher U (2013) Mammalian base excision repair: the forgotten archangel. Nucleic Acids Res 41(6):3483–3490PubMedPubMedCentralCrossRefGoogle Scholar
  39. Díez-Villaseñor C et al (2010) Diversity of CRISPR loci in Escherichia coli. Microbiology 156(5):1351–1361PubMedCrossRefPubMedCentralGoogle Scholar
  40. Ding Q et al (2013) Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs. Cell Stem Cell 12(4):393–394PubMedPubMedCentralCrossRefGoogle Scholar
  41. Dong C et al (2015) Targeting hepatitis B virus cccDNA by CRISPR/Cas9 nuclease efficiently inhibits viral replication. Antiviral Res 118:110–117PubMedCrossRefPubMedCentralGoogle Scholar
  42. Doudna JA, Charpentier E (2014) The new frontier of genome engineering with CRISPR–Cas9. Science 346(6213):1258096PubMedCrossRefPubMedCentralGoogle Scholar
  43. Elison GL, Acar M (2018) Scarless genome editing: progress towards understanding genotype–phenotype relationships. Curr Genet 64(6):1229–1238PubMedPubMedCentralCrossRefGoogle Scholar
  44. Enkler L et al (2016) Genome engineering in the yeast pathogen Candida glabrata using the CRISPR–Cas9 system. Sci Rep 6:35766PubMedPubMedCentralCrossRefGoogle Scholar
  45. Eyquem J et al (2017) Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature 543(7643):113PubMedPubMedCentralCrossRefGoogle Scholar
  46. Fellmann C et al (2017) Cornerstones of CRISPR–Cas in drug discovery and therapy. Nat Rev Drug Discov 16(2):89PubMedCrossRefPubMedCentralGoogle Scholar
  47. Feng Z et al (2014) Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis. Proc Natl Acad Sci 111(12):4632–4637PubMedCrossRefPubMedCentralGoogle Scholar
  48. Firth AL et al (2015) Functional gene correction for cystic fibrosis in lung epithelial cells generated from patient iPSCs. Cell Rep 12(9):1385–1390PubMedPubMedCentralCrossRefGoogle Scholar
  49. Fu Y et al (2013) High-frequency off-target mutagenesis induced by CRISPR–Cas nucleases in human cells. Nat Biotechnol 31(9):822PubMedPubMedCentralCrossRefGoogle Scholar
  50. Fuller KK et al (2015) Development of the CRISPR/Cas9 system for targeted gene disruption in Aspergillus fumigatus. Eukaryot Cell 14(11):1073–1080PubMedPubMedCentralCrossRefGoogle Scholar
  51. Gaj T, Gersbach CA, Barbas CF III (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31(7):397–405PubMedPubMedCentralCrossRefGoogle Scholar
  52. Garneau JE et al (2010) The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468(7320):67PubMedCrossRefPubMedCentralGoogle Scholar
  53. Gasiunas G et al (2012) Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci 109(39):E2579–E2586PubMedCrossRefPubMedCentralGoogle Scholar
  54. Ghezraoui H et al (2014) Chromosomal translocations in human cells are generated by canonical nonhomologous end-joining. Mol Cell 55(6):829–842PubMedPubMedCentralCrossRefGoogle Scholar
  55. Gilbert LA et al (2013) CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154(2):442–451PubMedPubMedCentralCrossRefGoogle Scholar
  56. Gilbert LA et al (2014) Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159(3):647–661PubMedPubMedCentralCrossRefGoogle Scholar
  57. Gilles AF, Averof M (2014) Functional genetics for all: engineered nucleases, CRISPR and the gene editing revolution. EvoDevo 5(1):43PubMedPubMedCentralCrossRefGoogle Scholar
  58. Gootenberg JS et al (2017) Nucleic acid detection with CRISPR–Cas13a/C2c2. Science 356(6336):438–442PubMedPubMedCentralCrossRefGoogle Scholar
  59. Grahl N et al (2017) Use of RNA–protein complexes for genome editing in non-albicans Candida species. mSphere 2(3):e00218–e00317PubMedPubMedCentralCrossRefGoogle Scholar
  60. Grissa I, Vergnaud G, Pourcel C (2007) The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinform 8(1):172CrossRefGoogle Scholar
  61. Groenen PM et al (1993) Nature of DNA polymorphism in the direct repeat cluster of Mycobacterium tuberculosis; application for strain differentiation by a novel typing method. Mol Microbiol 10(5):1057–1065PubMedCrossRefPubMedCentralGoogle Scholar
  62. Guilinger JP, Thompson DB, Liu DR (2014) Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat Biotechnol 32(6):577PubMedPubMedCentralCrossRefGoogle Scholar
  63. Heckl D et al (2014) Generation of mouse models of myeloid malignancy with combinatorial genetic lesions using CRISPR–Cas9 genome editing. Nat Biotechnol 32(9):941PubMedPubMedCentralCrossRefGoogle Scholar
  64. Heidenreich M, Zhang F (2016) Applications of CRISPR–Cas systems in neuroscience. Nat Rev Neurosci 17(1):36PubMedCrossRefPubMedCentralGoogle Scholar
  65. Heigwer F, Kerr G, Boutros M (2014) E-CRISP: fast CRISPR target site identification. Nat Methods 11(2):122PubMedCrossRefPubMedCentralGoogle Scholar
  66. Heler R et al (2015) Cas9 specifies functional viral targets during CRISPR–Cas adaptation. Nature 519(7542):199PubMedPubMedCentralCrossRefGoogle Scholar
  67. Hodgkins A et al (2015) WGE: a CRISPR database for genome engineering. Bioinformatics 31(18):3078–3080PubMedPubMedCentralCrossRefGoogle Scholar
  68. Hoe N et al (1999) Rapid molecular genetic subtyping of serotype M1 group A Streptococcus strains. Emerg Infect Dis 5(2):254PubMedPubMedCentralCrossRefGoogle Scholar
  69. Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327(5962):167–170PubMedCrossRefPubMedCentralGoogle Scholar
  70. Hou P et al (2015) Genome editing of CXCR189 by CRISPR/cas9 confers cells resistant to HIV-1 infection. Sci Rep 5:15577PubMedPubMedCentralCrossRefGoogle Scholar
  71. Hsu PD et al (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31(9):827PubMedPubMedCentralCrossRefGoogle Scholar
  72. Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR–Cas9 for genome engineering. Cell 157(6):1262–1278PubMedPubMedCentralCrossRefGoogle Scholar
  73. Hu Z, Yu L, Zhu D, Ding W, Wang X, Zhang C, Wang L, Jiang X, Shen H, He D, Li K, Xi L, Ma D, Wang H (2014a) Disruption of HPV16-E7 by CRISPR/Cas system induces apoptosis and growth inhibition in HPV16 positive human cervical cancer cells. BioMed Res Int. CrossRefPubMedPubMedCentralGoogle Scholar
  74. Hu W et al (2014) RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. Proc Natl Acad Sci 111(31):11461–11466PubMedCrossRefPubMedCentralGoogle Scholar
  75. Huang H et al (2016) CRISPR/Cas9-based efficient genome editing in Clostridium ljungdahlii, an autotrophic gas-fermenting bacterium. ACS Synth Biol 5(12):1355–1361PubMedCrossRefPubMedCentralGoogle Scholar
  76. Hur JK et al (2016) Targeted mutagenesis in mice by electroporation of Cpf1 ribonucleoproteins. Nat Biotechnol 34(8):807PubMedCrossRefPubMedCentralGoogle Scholar
  77. Ishino Y et al (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169(12):5429–5433PubMedPubMedCentralCrossRefGoogle Scholar
  78. Jansen R et al (2002) Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 43(6):1565–1575PubMedCrossRefPubMedCentralGoogle Scholar
  79. Jia H, Wang N (2014) Targeted genome editing of sweet orange using Cas9/sgRNA. PLoS One 9(4):e93806PubMedPubMedCentralCrossRefGoogle Scholar
  80. Jiang W et al (2013) RNA-guided editing of bacterial genomes using CRISPR–Cas systems. Nat Biotechnol 31(3):233PubMedPubMedCentralCrossRefGoogle Scholar
  81. Jinek M et al (2012a) A programmable dual-RNA—guided DNA endonuclease in adaptive bacterial immunity. Science 337:816PubMedPubMedCentralCrossRefGoogle Scholar
  82. Jinek M et al (2012b) A programmable dual-RNA—guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821PubMedPubMedCentralCrossRefGoogle Scholar
  83. Jinek M et al (2013) RNA-programmed genome editing in human cells. Life 2:00471Google Scholar
  84. Jinek M et al (2014) Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 343(6176):1247997PubMedPubMedCentralCrossRefGoogle Scholar
  85. Kampmann M, Bassik MC, Weissman JS (2014) Functional genomics platform for pooled screening and generation of mammalian genetic interaction maps. Nat Protoc 9(8):1825PubMedPubMedCentralCrossRefGoogle Scholar
  86. Kampmann M et al (2015) Next-generation libraries for robust RNA interference-based genome-wide screens. Proc Natl Acad Sci 112(26):E3384–E3391PubMedCrossRefPubMedCentralGoogle Scholar
  87. Kennedy EM, Cullen BR (2015) Bacterial CRISPR/Cas DNA endonucleases: a revolutionary technology that could dramatically impact viral research and treatment. Virology 479:213–220PubMedCrossRefPubMedCentralGoogle Scholar
  88. Kennedy EM et al (2014) Inactivation of the human papillomavirus E6 or E7 gene in cervical carcinoma cells by using a bacterial CRISPR/Cas RNA-guided endonuclease. J Virol 88(20):11965–11972PubMedPubMedCentralCrossRefGoogle Scholar
  89. Kennedy EM et al (2015) Suppression of hepatitis B virus DNA accumulation in chronically infected cells using a bacterial CRISPR/Cas RNA-guided DNA endonuclease. Virology 476:196–205PubMedCrossRefPubMedCentralGoogle Scholar
  90. Kim Y et al (2016a) Generation of knockout mice by Cpf1-mediated gene targeting. Nat Biotechnol 34(8):808PubMedCrossRefPubMedCentralGoogle Scholar
  91. Kim D et al (2016b) Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells. Nat Biotechnol 34(8):863PubMedCrossRefPubMedCentralGoogle Scholar
  92. Kim H et al (2017) CRISPR/Cpf1-mediated DNA-free plant genome editing. Nat Commun 8:14406PubMedPubMedCentralCrossRefGoogle Scholar
  93. Kleinstiver BP et al (2016a) Genome-wide specificities of CRISPR–Cas Cpf1 nucleases in human cells. Nat Biotechnol 34(8):869PubMedPubMedCentralCrossRefGoogle Scholar
  94. Kleinstiver BP et al (2016b) High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529(7587):490PubMedPubMedCentralCrossRefGoogle Scholar
  95. Knott GJ, Doudna JA (2018) CRISPR–Cas guides the future of genetic engineering. Science 361(6405):866–869PubMedPubMedCentralCrossRefGoogle Scholar
  96. Koike-Yusa H et al (2014) Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat Biotechnol 32(3):267PubMedCrossRefPubMedCentralGoogle Scholar
  97. Koonin EV, Makarova KS, Zhang F (2017) Diversity, classification and evolution of CRISPR–Cas systems. Curr Opin Microbiol 37:67–78PubMedPubMedCentralCrossRefGoogle Scholar
  98. Labun K et al (2016) CHOPCHOP v2: a web tool for the next generation of CRISPR genome engineering. Nucleic Acids Res 44(W1):W272–W276PubMedPubMedCentralCrossRefGoogle Scholar
  99. Legut M et al (2018) CRISPR-mediated TCR replacement generates superior anticancer transgenic T cells. Blood 131(3):311–322PubMedPubMedCentralCrossRefGoogle Scholar
  100. Lei Y et al (2014) CRISPR-P: a web tool for synthetic single-guide RNA design of CRISPR-system in plants. Mol Plant 7(9):1494–1496PubMedCrossRefPubMedCentralGoogle Scholar
  101. Lenoir WF, Lim TL, Hart T (2017) PICKLES: the database of pooled in vitro CRISPR knockout library essentiality screens. Nucleic Acids Res 46(D1):D776–D780PubMedCentralCrossRefGoogle Scholar
  102. Li J-F et al (2013) Multiplex and homologous recombination–mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31(8):688PubMedPubMedCentralCrossRefGoogle Scholar
  103. Li W et al (2014) MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol 15(12):554PubMedPubMedCentralCrossRefGoogle Scholar
  104. Li C et al (2015) Inhibition of HIV-1 infection of primary CD4 + T-cells by gene editing of CCR185 using adenovirus-delivered CRISPR/Cas9. J Gen Virol 96(8):2381–2393PubMedCrossRefGoogle Scholar
  105. Liang G et al (2016) Selection of highly efficient sgRNAs for CRISPR/Cas9-based plant genome editing. Sci Rep 6:21451PubMedPubMedCentralCrossRefGoogle Scholar
  106. Lieber MR et al (2003) Mechanism and regulation of human non-homologous DNA end-joining. Nat Rev Mol Cell Biol 4(9):712PubMedCrossRefPubMedCentralGoogle Scholar
  107. Lin S-R et al (2014) The CRISPR/Cas9 system facilitates clearance of the intrahepatic HBV templates in vivo. Mol Ther Nucleic Acids 3:e186PubMedPubMedCentralCrossRefGoogle Scholar
  108. Liu R et al (2015a) Efficient genome editing in filamentous fungus Trichoderma reesei using the CRISPR/Cas9 system. Cell Discov 1:15007PubMedPubMedCentralCrossRefGoogle Scholar
  109. Liu X et al (2015b) Inhibition of hepatitis B virus by the CRISPR/Cas9 system via targeting the conserved regions of the viral genome. J Gen Virol 96(8):2252–2261PubMedCrossRefPubMedCentralGoogle Scholar
  110. Liu Q et al (2017a) Development of a genome-editing CRISPR/Cas9 system in thermophilic fungal Myceliophthora species and its application to hyper-cellulase production strain engineering. Biotechnol Biofuels 10(1):1PubMedPubMedCentralCrossRefGoogle Scholar
  111. Liu H et al (2017b) CRISPR-P 2.0: an improved CRISPR–Cas9 tool for genome editing in plants. Mol Plant 10(3):530–532PubMedCrossRefGoogle Scholar
  112. Long C et al (2014) Prevention of muscular dystrophy in mice by CRISPR/Cas9–mediated editing of germline DNA. Science 345(6201):1184–1188PubMedPubMedCentralCrossRefGoogle Scholar
  113. Long C et al (2016) Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science 351(6271):400–403PubMedCrossRefGoogle Scholar
  114. Makarova KS et al (2011a) Evolution and classification of the CRISPR–Cas systems. Nat Rev Microbiol 9(6):467PubMedCrossRefGoogle Scholar
  115. Makarova KS et al (2011b) Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR–Cas systems. Biol Direct 6(1):38PubMedPubMedCentralCrossRefGoogle Scholar
  116. Makarova KS, Wolf YI, Koonin EV (2013) The basic building blocks and evolution of CRISPR–Cas systems. Portland Press Limited, LondonCrossRefGoogle Scholar
  117. Makarova KS et al (2015) An updated evolutionary classification of CRISPR–Cas systems. Nat Rev Microbiol 13(11):722PubMedPubMedCentralCrossRefGoogle Scholar
  118. Mali P et al (2013a) RNA-guided human genome engineering via Cas9. Science 339(6121):823–826PubMedPubMedCentralCrossRefGoogle Scholar
  119. Mali P et al (2013b) CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol 31(9):833PubMedPubMedCentralCrossRefGoogle Scholar
  120. Malina A et al (2014) Adapting CRISPR/Cas9 for functional genomics screens. Methods in enzymology. Elsevier, Amsterdam, pp 193–213Google Scholar
  121. Marceau CD et al (2016) Genetic dissection of Flaviviridae host factors through genome-scale CRISPR screens. Nature 535(7610):159PubMedPubMedCentralCrossRefGoogle Scholar
  122. Marraffini LA, Sontheimer EJ (2010) CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat Rev Genet 11(3):181PubMedPubMedCentralCrossRefGoogle Scholar
  123. Masepohl B, Görlitz K, Böhme H (1996) Long tandemly repeated repetitive (LTRR) sequences in the filamentous cyanobacterium Anabaena sp. PCC 7120. Biochim Biophys Acta (BBA) Gene Struct Expr 1307(1):26–30CrossRefGoogle Scholar
  124. Mendell JR, Rodino-Klapac LR (2016) Duchenne muscular dystrophy: CRISPR/Cas9 treatment. Cell Res 26(5):513PubMedPubMedCentralCrossRefGoogle Scholar
  125. Meng X et al (2017) Construction of a genome-wide mutant library in rice using CRISPR/Cas9. Mol Plant 10(9):1238–1241CrossRefGoogle Scholar
  126. Miao J et al (2013) Targeted mutagenesis in rice using CRISPR–Cas system. Cell Res 23(10):1233PubMedPubMedCentralCrossRefGoogle Scholar
  127. Min K et al (2016) Candida albicans gene deletion with a transient CRISPR–Cas9 system. mSphere 1(3):e00130–e00216PubMedPubMedCentralCrossRefGoogle Scholar
  128. Mojica F et al (1995) Long stretches of short tandem repeats are present in the largest replicons of the Archaea Haloferax mediterranei and Haloferax volcanii and could be involved in replicon partitioning. Mol Microbiol 17(1):85–93PubMedCrossRefGoogle Scholar
  129. Mojica FJ, García-Martínez J, Soria E (2005) Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 60(2):174–182PubMedCrossRefGoogle Scholar
  130. Mojica FJ et al (2009) Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155(3):733–740PubMedCrossRefGoogle Scholar
  131. Monteys AM et al (2017) CRISPR/Cas9 editing of the mutant huntingtin allele in vitro and in vivo. Mol Ther 25(1):12–23PubMedPubMedCentralCrossRefGoogle Scholar
  132. Moreno-Mateos MA et al (2017) CRISPR-Cpf1 mediates efficient homology-directed repair and temperature-controlled genome editing. Nat Commun 8(1):2024PubMedPubMedCentralCrossRefGoogle Scholar
  133. Nagaraju S et al (2016) Genome editing of Clostridium autoethanogenum using CRISPR/Cas9. Biotechnol Biofuels 9(1):219PubMedPubMedCentralCrossRefGoogle Scholar
  134. Nelson KE et al (1999) Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga maritima. Nature 399(6734):323PubMedCrossRefGoogle Scholar
  135. Nelson CE et al (2016) In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 351(6271):403–407PubMedCrossRefGoogle Scholar
  136. Nelson CE, Robinson-Hamm JN, Gersbach CA (2017) Genome engineering: a new approach to gene therapy for neuromuscular disorders. Nat Rev Neurol 13(11):647PubMedCrossRefGoogle Scholar
  137. Nishimasu H et al (2014) Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156(5):935–949PubMedPubMedCentralCrossRefGoogle Scholar
  138. O’Rourke KP et al (2017) Transplantation of engineered organoids enables rapid generation of metastatic mouse models of colorectal cancer. Nat Biotechnol 35(6):577PubMedPubMedCentralCrossRefGoogle Scholar
  139. Osborn MJ et al (2014) Fanconi anemia gene editing by the CRISPR/Cas9 system. Hum Gene Ther 26(2):114–126PubMedCentralCrossRefPubMedGoogle Scholar
  140. Park J, Bae S, Kim J-S (2015) Cas-Designer: a web-based tool for choice of CRISPR–Cas9 target sites. Bioinformatics 31(24):4014–4016PubMedPubMedCentralGoogle Scholar
  141. Pawluk A et al (2016) Naturally occurring off-switches for CRISPR–Cas9. Cell 167(7):1829–1838PubMedPubMedCentralCrossRefGoogle Scholar
  142. Peng D, Tarleton R (2015) EuPaGDT: a web tool tailored to design CRISPR guide RNAs for eukaryotic pathogens. Microb Genom 1(4):e000033. CrossRefPubMedPubMedCentralGoogle Scholar
  143. Perez-Pinera P et al (2013) RNA-guided gene activation by CRISPR–Cas9—based transcription factors. Nat Methods 10(10):973PubMedPubMedCentralCrossRefGoogle Scholar
  144. Petris G et al (2017) Hit and go CAS9 delivered through a lentiviral based self-limiting circuit. Nat Commun 8:15334PubMedPubMedCentralCrossRefGoogle Scholar
  145. Platt RJ et al (2014) CRISPR–Cas9 knockin mice for genome editing and cancer modeling. Cell 159(2):440–455PubMedPubMedCentralCrossRefGoogle Scholar
  146. Polstein LR, Gersbach CA (2015) A light-inducible CRISPR–Cas9 system for control of endogenous gene activation. Nat Chem Biol 11(3):198PubMedPubMedCentralCrossRefGoogle Scholar
  147. Port F, Bullock SL (2016) Augmenting CRISPR applications in Drosophila with tRNA-flanked sgRNAs. Nat Methods 13(10):852PubMedPubMedCentralCrossRefGoogle Scholar
  148. Pougach K et al (2010) Transcription, processing and function of CRISPR cassettes in Escherichia coli. Mol Microbiol 77(6):1367–1379PubMedPubMedCentralCrossRefGoogle Scholar
  149. Pourcel C, Salvignol G, Vergnaud G (2005) CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151(3):653–663PubMedCrossRefGoogle Scholar
  150. Prykhozhij SV et al (2015) CRISPR multitargeter: a web tool to find common and unique CRISPR single guide RNA targets in a set of similar sequences. PLoS One 10(3):e0119372PubMedPubMedCentralCrossRefGoogle Scholar
  151. Puschnik AS et al (2017) A CRISPR toolbox to study virus–host interactions. Nat Rev Microbiol 15(6):351PubMedPubMedCentralCrossRefGoogle Scholar
  152. Qi LS et al (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152(5):1173–1183PubMedPubMedCentralCrossRefGoogle Scholar
  153. Ramanan V et al (2015) CRISPR/Cas9 cleavage of viral DNA efficiently suppresses hepatitis B virus. Sci Rep 5:10833PubMedPubMedCentralCrossRefGoogle Scholar
  154. Ran FA et al (2013) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154(6):1380–1389PubMedPubMedCentralCrossRefGoogle Scholar
  155. Rauscher B, Heigwer F, Breinig M, Winter J, Boutros M (2016) GenomeCRISPR-a database for high-throughput CRISPR/Cas9 screens. Nucleic Acids Res. CrossRefPubMedPubMedCentralGoogle Scholar
  156. Ren X et al (2014) Enhanced specificity and efficiency of the CRISPR/Cas9 system with optimized sgRNA parameters in Drosophila. Cell Rep 9(3):1151–1162PubMedPubMedCentralCrossRefGoogle Scholar
  157. Ren J et al (2017) Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clin Cancer Res 23(9):2255–2266PubMedCrossRefGoogle Scholar
  158. Rogers ZN et al (2017) A quantitative and multiplexed approach to uncover the fitness landscape of tumor suppression in vivo. Nat Methods 14(7):737PubMedPubMedCentralCrossRefGoogle Scholar
  159. Rogers ZN et al (2018) Mapping the in vivo fitness landscape of lung adenocarcinoma tumor suppression in mice. Nat Genet 50(4):483PubMedPubMedCentralCrossRefGoogle Scholar
  160. Ronda C et al (2014) Accelerating genome editing in CHO cells using CRISPR Cas9 and CRISPy, a web-based target finding tool. Biotechnol Bioeng 111(8):1604–1616PubMedPubMedCentralCrossRefGoogle Scholar
  161. Roper J et al (2017) In vivo genome editing and organoid transplantation models of colorectal cancer and metastasis. Nat Biotechnol 35(6):569PubMedPubMedCentralCrossRefGoogle Scholar
  162. Rousseau C et al (2009) CRISPI: a CRISPR interactive database. Bioinformatics 25(24):3317–3318PubMedPubMedCentralCrossRefGoogle Scholar
  163. Sánchez-Rivera FJ, Jacks T (2015) Applications of the CRISPR–Cas9 system in cancer biology. Nat Rev Cancer 15(7):387PubMedPubMedCentralCrossRefGoogle Scholar
  164. Sánchez-Rivera FJ et al (2014) Rapid modelling of cooperating genetic events in cancer through somatic genome editing. Nature 516(7531):428PubMedPubMedCentralCrossRefGoogle Scholar
  165. Sander JD, Joung JK (2014) CRISPR–Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32(4):347PubMedPubMedCentralCrossRefGoogle Scholar
  166. Sapranauskas R et al (2011) The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res 39(21):9275–9282PubMedPubMedCentralCrossRefGoogle Scholar
  167. Schwank G et al (2013) Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 13(6):653–658PubMedCrossRefGoogle Scholar
  168. Shalem O et al (2014) Genome-scale CRISPR–Cas9 knockout screening in human cells. Science 343(6166):84–87CrossRefGoogle Scholar
  169. Shalem O, Sanjana NE, Zhang F (2015) High-throughput functional genomics using CRISPR–Cas9. Nat Rev Genet 16(5):299PubMedPubMedCentralCrossRefGoogle Scholar
  170. Shan Q et al (2013) Targeted genome modification of crop plants using a CRISPR–Cas system. Nat Biotechnol 31(8):686PubMedCrossRefGoogle Scholar
  171. Shin JW et al (2016) Permanent inactivation of Huntington’s disease mutation by personalized allele-specific CRISPR/Cas9. Hum Mol Genet 25(20):4566–4576PubMedPubMedCentralGoogle Scholar
  172. Shmakov S et al (2015) Discovery and functional characterization of diverse class 2 CRISPR–Cas systems. Mol Cell 60(3):385–397PubMedPubMedCentralCrossRefGoogle Scholar
  173. Shmakov S et al (2017) Diversity and evolution of class 2 CRISPR–Cas systems. Nat Rev Microbiol 15(3):169PubMedPubMedCentralCrossRefGoogle Scholar
  174. Slaymaker IM et al (2016) Rationally engineered Cas9 nucleases with improved specificity. Science 351(6268):84–88PubMedPubMedCentralCrossRefGoogle Scholar
  175. Smargon AA et al (2017) Cas13b is a type VI-B CRISPR-associated RNA-guided RNase differentially regulated by accessory proteins Csx27 and Csx28. Mol Cell 65(4):618–630PubMedPubMedCentralCrossRefGoogle Scholar
  176. Soreanu I et al (2018) Marker-free genetic manipulations in yeast using CRISPR/CAS9 system. Curr Genet 64(5):1129–1139PubMedCrossRefPubMedCentralGoogle Scholar
  177. Stemmer M et al (2015) CCTop: an intuitive, flexible and reliable CRISPR/Cas9 target prediction tool. PLoS One 10(4):e0124633PubMedPubMedCentralCrossRefGoogle Scholar
  178. Sternberg SH et al (2014) DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507(7490):62PubMedPubMedCentralCrossRefGoogle Scholar
  179. Straub C et al (2014) CRISPR/Cas9-mediated gene knock-down in post-mitotic neurons. PLoS One 9(8):e105584PubMedPubMedCentralCrossRefGoogle Scholar
  180. Strong A, Musunuru K (2017) Genome editing in cardiovascular diseases. Nat Rev Cardiol 14(1):11PubMedCrossRefPubMedCentralGoogle Scholar
  181. Swarts DC, Jinek M (2018) Cas9 versus Cas12a/Cpf1: structure–function comparisons and implications for genome editing. Wiley Interdiscip Rev RNA 9(5):e1481CrossRefGoogle Scholar
  182. Świat MA et al (2017) FnCpf1: a novel and efficient genome editing tool for Saccharomyces cerevisiae. Nucleic Acids Res 45(21):12585–12598PubMedPubMedCentralCrossRefGoogle Scholar
  183. Szczelkun MD et al (2014) Direct observation of R-loop formation by single RNA-guided Cas9 and Cascade effector complexes. Proc Natl Acad Sci 111(27):9798–9803PubMedCrossRefPubMedCentralGoogle Scholar
  184. Tabebordbar M et al (2016) In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science 351(6271):407–411PubMedCrossRefPubMedCentralGoogle Scholar
  185. Tang X et al (2017) A CRISPR–Cpf1 system for efficient genome editing and transcriptional repression in plants. Nat Plants 3(3):17018PubMedCrossRefPubMedCentralGoogle Scholar
  186. Taymans J-M et al (2007) Comparative analysis of adeno-associated viral vector serotypes 1, 2, 5, 7, and 8 in mouse brain. Hum Gene Ther 18(3):195–206PubMedCrossRefPubMedCentralGoogle Scholar
  187. Terns MP, Terns RM (2011) CRISPR-based adaptive immune systems. Curr Opin Microbiol 14(3):321–327PubMedPubMedCentralCrossRefGoogle Scholar
  188. Tsai SQ et al (2014) Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol 32(6):569PubMedPubMedCentralCrossRefGoogle Scholar
  189. Van der Oost J et al (2009) CRISPR-based adaptive and heritable immunity in prokaryotes. Trends Biochem Sci 34(8):401–407PubMedCrossRefPubMedCentralGoogle Scholar
  190. Van Der Oost J et al (2014) Unravelling the structural and mechanistic basis of CRISPR–Cas systems. Nat Rev Microbiol 12(7):479PubMedPubMedCentralCrossRefGoogle Scholar
  191. Varshney GK et al (2015) CRISPRz: a database of zebrafish validated sgRNAs. Nucleic Acids Res 44(D1):D822–D826PubMedPubMedCentralCrossRefGoogle Scholar
  192. Vaschetto LM (2018) Modulating signaling networks by CRISPR/Cas9-mediated transposable element insertion. Curr Genet 64(2):405–412PubMedCrossRefPubMedCentralGoogle Scholar
  193. Vyas VK, Barrasa MI, Fink GR (2015) A Candida albicans CRISPR system permits genetic engineering of essential genes and gene families. Sci Adv 1(3):e1500248PubMedPubMedCentralCrossRefGoogle Scholar
  194. Walter DM et al (2017) Systematic in vivo inactivation of chromatin-regulating enzymes identifies Setd2 as a potent tumor suppressor in lung adenocarcinoma. Cancer Res 77(7):1719–1729PubMedPubMedCentralCrossRefGoogle Scholar
  195. Wang J, Quake SR (2014) RNA-guided endonuclease provides a therapeutic strategy to cure latent herpesviridae infection. Proc Natl Acad Sci 111(36):13157–13162PubMedCrossRefPubMedCentralGoogle Scholar
  196. Wang T et al (2014a) Genetic screens in human cells using the CRISPR–Cas9 system. Science 343(6166):80–84PubMedPubMedCentralCrossRefGoogle Scholar
  197. Wang W et al (2014b) CCR186 gene disruption via lentiviral vectors expressing Cas9 and single guided RNA renders cells resistant to HIV-1 infection. PLoS One 9(12):e115987PubMedPubMedCentralCrossRefGoogle Scholar
  198. Wang D et al (2015a) Adenovirus-mediated somatic genome editing of Pten by CRISPR/Cas9 in mouse liver in spite of Cas9-specific immune responses. Hum Gene Ther 26(7):432–442PubMedPubMedCentralCrossRefGoogle Scholar
  199. Wang J et al (2015b) Dual gRNAs guided CRISPR/Cas9 system inhibits hepatitis B virus replication. World J Gastroenterol 21(32):9554PubMedPubMedCentralCrossRefGoogle Scholar
  200. Wang H, La Russa M, Qi LS (2016a) CRISPR/Cas9 in genome editing and beyond. Annu Rev Biochem 85:227–264PubMedCrossRefPubMedCentralGoogle Scholar
  201. Wang Y et al (2016b) Bacterial genome editing with CRISPR–Cas9: deletion, integration, single nucleotide modification, and desirable “clean” mutant selection in Clostridium beijerinckii as an example. ACS Synth Biol 5(7):721–732PubMedCrossRefPubMedCentralGoogle Scholar
  202. Wei Y et al (2015a) Sequences spanning the leader-repeat junction mediate CRISPR adaptation to phage in Streptococcus thermophilus. Nucleic Acids Res 43(3):1749–1758PubMedPubMedCentralCrossRefGoogle Scholar
  203. Wei Y, Terns RM, Terns MP (2015b) Cas9 function and host genome sampling in type II-A CRISPR–Cas adaptation. Genes Dev 29(4):356–361PubMedPubMedCentralCrossRefGoogle Scholar
  204. Westra ER et al (2010) H-NS-mediated repression of CRISPR-based immunity in Escherichia coli K12 can be relieved by the transcription activator LeuO. Mol Microbiol 77(6):1380–1393PubMedCrossRefPubMedCentralGoogle Scholar
  205. Westra ER et al (2013) Type IE CRISPR–Cas systems discriminate target from non-target DNA through base pairing-independent PAM recognition. PLoS Genet 9(9):e1003742PubMedPubMedCentralCrossRefGoogle Scholar
  206. Wilkinson RA, Martin C, Nemudryi AA, Wiedenheft B (2019) CRISPR RNA-guided autonomous delivery of Cas9. Nat Struct Mol Biol 26(1):14–24PubMedCrossRefPubMedCentralGoogle Scholar
  207. Winters IP et al (2017) Multiplexed in vivo homology-directed repair and tumor barcoding enables parallel quantification of Kras variant oncogenicity. Nat Commun 8(1):2053PubMedPubMedCentralCrossRefGoogle Scholar
  208. Wong N, Liu W, Wang X (2015) WU-CRISPR: characteristics of functional guide RNAs for the CRISPR/Cas9 system. Genome Biol 16(1):218PubMedPubMedCentralCrossRefGoogle Scholar
  209. Wu Y et al (2013) Correction of a genetic disease in mouse via use of CRISPR–Cas9. Cell Stem Cell 13(6):659–662PubMedCrossRefPubMedCentralGoogle Scholar
  210. Wu X et al (2014) Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat Biotechnol 32(7):670PubMedPubMedCentralCrossRefGoogle Scholar
  211. Xie K, Yang Y (2013) RNA-guided genome editing in plants using a CRISPR–Cas system. Mol Plant 6(6):1975–1983PubMedCrossRefGoogle Scholar
  212. Xiong X et al (2016) CRISPR/Cas9 for human genome engineering and disease research. Annu Rev Genom Hum Genet 17:131–154CrossRefGoogle Scholar
  213. Xu X et al (2017) Reversal of phenotypic abnormalities by CRISPR/Cas9-mediated gene correction in Huntington disease patient-derived induced pluripotent stem cells. Stem Cell Rep 8(3):619–633CrossRefGoogle Scholar
  214. Yang L et al (2015) Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science 350(6264):1101–1104PubMedCrossRefGoogle Scholar
  215. Ye L et al (2014) Seamless modification of wild-type induced pluripotent stem cells to the natural CCR187Δ32 mutation confers resistance to HIV infection. Proc Natl Acad Sci 111(26):9591–9596PubMedCrossRefGoogle Scholar
  216. Yin H, Kauffman KJ, Anderson DG (2017a) Delivery technologies for genome editing. Nat Rev Drug Discov 16(6):387PubMedCrossRefGoogle Scholar
  217. Yin K, Gao C, Qiu J-L (2017b) Progress and prospects in plant genome editing. Nat Plants 3(8):17107PubMedCrossRefGoogle Scholar
  218. Yin H, Xue W, Anderson DG (2019) CRISPR–Cas: a tool for cancer research and therapeutics. Nat Rev Clin Oncol 16:281PubMedCrossRefGoogle Scholar
  219. Yosef I, Goren MG, Qimron U (2012) Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli. Nucleic Acids Res 40(12):5569–5576PubMedPubMedCentralCrossRefGoogle Scholar
  220. Zetsche B et al (2015a) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR–Cas system. Cell 163(3):759–771PubMedPubMedCentralCrossRefGoogle Scholar
  221. Zetsche B, Volz SE, Zhang F (2015b) A split-Cas9 architecture for inducible genome editing and transcription modulation. Nat Biotechnol 33(2):139PubMedCrossRefPubMedCentralGoogle Scholar
  222. Zetsche B et al (2017) Multiplex gene editing by CRISPR–Cpf1 using a single crRNA array. Nat Biotechnol 35(1):31PubMedCrossRefPubMedCentralGoogle Scholar
  223. Zhang S, Sodroski J (2015) Efficient human immunodeficiency virus (HIV-1) infection of cells lacking PDZD8. Virology 481:73–78PubMedPubMedCentralCrossRefGoogle Scholar
  224. Zhang F et al (2018) CRISPRminer is a knowledge base for exploring CRISPR–Cas systems in microbe and phage interactions. Commun Biol 1(1):180PubMedPubMedCentralCrossRefGoogle Scholar
  225. Zhen S et al (2015) Harnessing the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated Cas9 system to disrupt the hepatitis B virus. Gene Ther 22(5):404PubMedCrossRefGoogle Scholar
  226. Zhou Y et al (2014) High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells. Nature 509(7501):487PubMedCrossRefGoogle Scholar
  227. Zhu LJ et al (2014) CRISPRseek: a bioconductor package to identify target-specific guide RNAs for CRISPR–Cas9 genome-editing systems. PLoS One 9(9):e108424PubMedPubMedCentralCrossRefGoogle Scholar
  228. Zhu S et al (2016) Genome-scale deletion screening of human long non-coding RNAs using a paired-guide RNA CRISPR–Cas9 library. Nat Biotechnol 34(12):1279PubMedPubMedCentralCrossRefGoogle Scholar
  229. Zuckermann M et al (2015) Somatic CRISPR/Cas9-mediated tumour suppressor disruption enables versatile brain tumour modelling. Nat Commun 6:7391PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Antara Barman
    • 1
  • Bornali Deb
    • 1
  • Supriyo Chakraborty
    • 1
    Email author
  1. 1.Department of BiotechnologyAssam University, SilcharSilcharIndia

Personalised recommendations