Advertisement

Two protein kinases UvPmk1 and UvCDC2 with significant functions in conidiation, stress response and pathogenicity of rice false smut fungus Ustilaginoidea virens

  • Jintian Tang
  • Jing Bai
  • Xiaoyang Chen
  • Lu Zheng
  • Hao Liu
  • Junbin HuangEmail author
Original Article
  • 47 Downloads

Abstract

Ustilaginoidea virens is an important fungus causing rice false smut, a devastating disease on spikelets of rice. In this study, we identified and characterized two CMGC (CDK/MAPK/GSK3/CLK) kinase genes, UvPmk1 and UvCDC2, in U. virens. Although UvPmk1 and UvCDC2 are, respectively, homologous to Fus3/Kss1 mitogen-activated protein kinases (MAPKs) and cyclin-dependent kinases (CDKs), they all have a conserved serine/threonine protein kinase domain. The qRT-PCR analysis of the relative expression of UvPmk1 and UvCDC2 during the infection of U. virens showed that these two genes were highly expressed during infection. UvPmk1 and UvCDC2 knockout mutants exhibited no significant changes in mycelial vegetative growth but decreases in conidiation. In addition, both UvPmk1 and UvCDC2 knockout mutants showed increases in tolerance to hyperosmotic and cell wall stresses, but they, respectively, exhibited decreases and increases in tolerance to oxidative stress compared with the wild-type strain HWD-2. Pathogenicity and infection assays demonstrated the defective growth of infection hyphae and significant loss of virulence in UvPmk1 and UvCDC2 knockout mutants. Taken together, our results demonstrate that UvPmk1 and UvCDC2 play important roles in the conidiation, stress response, and pathogenicity of U. virens.

Keywords

Ustilaginoidea virens UvPmk1 UvCDC2 Protein kinases Conidiation Stress response Pathogenicity 

Notes

Acknowledgements

We are grateful to Prof. Wenxian Sun at China Agricultural University for providing the gene deletion vectors pGKO. This work was supported by the National Key Research and Development Program (2017YFD0301400, 2016YFD0300700) and the Fundamental Research Funds for the Central Universities of China (2662018JC051).

Supplementary material

294_2019_1029_MOESM1_ESM.docx (17 kb)
Supplementary material 1 (DOCX 16 kb)

References

  1. Ashizawa T, Takahashi M, Arai M, Arie T (2012) Rice false smut pathogen, Ustilaginoidea virens, invades through small gap at the apex of a rice spikelet before heading. J Gen Plant Pathol 78:255–259.  https://doi.org/10.1007/s10327-012-0389-3 Google Scholar
  2. Booher R, Beach D (1986) Site-specific mutagenesis of cdc2+, a cell cycle control gene of the fission yeast Schizosaccharomyces pombe. Mol Cell Biol 6(10):3523–3530.  https://doi.org/10.1128/MCB.6.10.3523 Google Scholar
  3. Borkovich KA, Alex LA, Yarden O, Freitag M, Turner GE, Read ND, Seiler S, Bell-Pedersen D, Paietta J, Plesofsky N et al (2004) Lessons from the genome sequence of Neurospora crassa: tracing the path from genomic blueprint to multicellular organism. Microbiol Mol Biol Rev 68(1):1–108.  https://doi.org/10.1128/mmbr.68.1.1-108.2004 Google Scholar
  4. Bruno KS, Tenjo F, Li L, Hamer JE, Xu JR (2004) Cellular localization and role of kinase activity of PMK1 in Magnaporthe grisea. Eukaryot Cell 3(6):1525–1532.  https://doi.org/10.1128/EC.3.6.1525-1532.2004 Google Scholar
  5. Di Pietro A, García-Maceira FI, Méglecz E, Roncero MIG (2001) A MAP kinase of the vascular wilt fungus Fusarium oxysporum is essential for root penetration and pathogenesis. Mol Microbiol 39(5):1140–1152.  https://doi.org/10.1111/j.1365-2958.2001.02307.x Google Scholar
  6. Fan J, Yang J, Wang YQ, Li GB, Li Y, Huang F, Wang WM (2016) Current understanding on Villosiclava virens, a unique flower-infecting fungus causing rice false smut disease. Mol Plant Pathol 17(9):1321–1330.  https://doi.org/10.1111/mpp.12362 Google Scholar
  7. Fan J, Du N, Li L, Li GB, Wang YQ, Zhou YF, Hu XH, Liu J, Zhao JQ, Li Y et al (2019) A core effector UV_1261 promotes Ustilaginoidea virens infection via spatiotemporally suppressing plant defense. Phytopathol Res 1(1):11.  https://doi.org/10.1186/s42483-019-0019-5 Google Scholar
  8. Fang AF, Gao H, Zhang N, Zheng XH, Qiu SS, Li YJ, Zhou S, Cui FH, Sun WX (2019) A novel effector gene SCRE2 contributes to full virulence of Ustilaginoidea virens to rice. Front Microbiol 10:845.  https://doi.org/10.3389/fmicb.2019.00845 Google Scholar
  9. Guo WW, Gao YY, Yu ZM, Xiao YH, Zhang ZG, Zhang HF (2019) The adenylate cyclase UvAc1 and phosphodiesterase UvPdeH control the intracellular cAMP level, development, and pathogenicity of the rice false smut fungus Ustilaginoidea virens. Fungal Genet Biol.  https://doi.org/10.1016/j.fgb.2019.04.017 Google Scholar
  10. Hamel LP, Nicole MC, Duplessis S, Ellis BE (2012) Mitogen-activated protein kinase signaling in plant-interacting fungi: distinct messages from conserved messengers. Plant Cell 24:1327–1351.  https://doi.org/10.1105/tpc.112.096156 Google Scholar
  11. Hu M, Luo L, Wang S, Liu Y, Li J (2014) Infection processes of Ustilaginoidea virens during artificial inoculation of rice panicles. Euro J Plant Pathol 139:67–77.  https://doi.org/10.1007/s10658-013-0364-7 Google Scholar
  12. Jia Q, Lv B, Guo MY, Luo CX, Zheng L, Hsiang T, Huang JB (2015a) Effect of rice growth stage, temperature, relative humidity and wetness duration on infection of rice panicles by Villosiclava virens. Eur J Plant Pathol 141:15–25.  https://doi.org/10.1007/s10658-014-0516-4 Google Scholar
  13. Jia Q, Gu QN, Zheng L, Hsiang T, Luo CX, Huang JB (2015b) Genetic analysis of the population structure of the rice false smut fungus, Villosiclava virens, in China using microsatellite markers mined from a genome assembly. Plant Pathol 64(6):1440–1449.  https://doi.org/10.1111/ppa.12373 Google Scholar
  14. Jiang C, Zhang X, Liu H, Xu JR (2018) Mitogen-activated protein kinase signaling in plant pathogenic fungi. PLoS Pathog 14(3):e1006875.  https://doi.org/10.1371/journal.ppat.1006875 Google Scholar
  15. Koiso Y, Li Y, Iwasaki S, Hanaka K, Kobayashi T, Sonoda R, Fujita Y, Yaegashi H, Sato Z (1994) Ustiloxins, antimitotic cyclic peptides from false smut balls on rice panicles caused by Ustilaginoidea virens. J Antibiot 47:765–773.  https://doi.org/10.7164/antibiotics.47.765 Google Scholar
  16. Koyama K, Natori S (1988) Further characterization of seven bis (naphtho-gpyrone) congeners of ustilaginoidins, coloring matters of Claviceps virens (Ustilaginoidea virens). Chem Pharm Bull 36:146–152.  https://doi.org/10.1248/cpb.36.146 Google Scholar
  17. Koyama K, Ominato K, Natori S, Tashiro T, Tsuruo T (1988) Cytotoxicity and antitumor activities of fungal bis (naphtho-gamma-pyrone) derivatives. J Pharmacobiodyn 11:630–635.  https://doi.org/10.1248/bpb1978.11.630 Google Scholar
  18. Li YJ, Wang M, Liu ZH, Zhang K, Cui FH, Sun WX (2019) Towards understanding the biosynthetic pathway for ustilaginoidin mycotoxins in Ustilaginoidea virens. Environ Microbiol.  https://doi.org/10.1111/1462-2920.14572 Google Scholar
  19. Liang Y, Han Y, Wang CF, Jiang C, Xu JR (2018) Targeted deletion of the USTA and UvSLT2 genes efficiently in Ustilaginoidea virens with the CRISPR-Cas9 system. Front Plant Sci 9:699.  https://doi.org/10.3389/fpls.2018.00699 Google Scholar
  20. Liu HQ, Zhang SJ, Ma JW, Dai YF, Li CH, Lyu XL, Wang CF, Xu JR (2015) Two Cdc2 kinase genes with distinct functions in vegetative and infectious hyphae in Fusarium graminearum. PLoS Pathog 11(6):e1004913.  https://doi.org/10.1371/journal.ppat.1004913 Google Scholar
  21. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25:402–408.  https://doi.org/10.1006/meth.2001.1262 Google Scholar
  22. Lv B, Zheng L, Liu H, Tang JT, Hsiang T, Huang JB (2016) Use of random T-DNA mutagenesis in identification of gene UvPRO1, a regulator of conidiation, stress response, and virulence in Ustilaginoidea virens. Front Microbiol 7:2086.  https://doi.org/10.3389/fmicb.2016.02086 Google Scholar
  23. Madrid M, Soto T, Khong HK, Franco A, Vicente J, Pérez P, Gacto M, Cansado J (2006) Stress-induced response, localization, and regulation of the Pmk1 cell integrity pathway in Schizosaccharomyces pombe. J Biol Chem 281(4):2033–2043.  https://doi.org/10.1074/jbc.m506467200 Google Scholar
  24. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298(5600):1912–1934.  https://doi.org/10.1126/science.1075762 Google Scholar
  25. Mendenhall MD, Hodge AE (1998) Regulation of Cdc28 cyclin-dependent protein kinase activity during the cell cycle of the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev 62(4):1191–1243Google Scholar
  26. Mey G, Oeser B, Lebrun MH, Tudzynski P (2002) The biotrophic, non-appressorium-forming grass pathogen Claviceps purpurea needs a Fus3/Pmk1 homologous mitogen-activated protein kinase for colonization of rye ovarian tissue. Mol Plant Microbe Interact 15(4):303–312.  https://doi.org/10.1094/MPMI.2002.15.4.303 Google Scholar
  27. Osmani AH, van Peij N, Mischke M, O’Connell MJ, Osmani SA (1994) A single p34cdc2 protein kinase (encoded by nimX cdc2) is required at G1 and G2 in Aspergillus nidulans. J Cell Sci 107(6):1519–1528Google Scholar
  28. Qiu JH, Meng S, Deng YZ, Kou YJ (2019) Ustilaginoidea Virens: A fungus infects rice flower and threats world rice production. Rice Sci 26:199–206Google Scholar
  29. Rispail N, Soanes DM, Ant C, Czajkowski R, Grunler A, Czajkowski R, Grünler A, Huguet R, Perez-Nadales E, Poli A et al (2009) Comparative genomics of MAP kinase and calcium-calcineurin signalling components in plant and human pathogenic fungi. Fungal Genet Biol 46:287–298.  https://doi.org/10.1016/j.fgb.2009.01.002 Google Scholar
  30. Robert X, Gouet P (2014) Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res 42(W1):W320–W324.  https://doi.org/10.1093/nar/gku316 Google Scholar
  31. Sakulkoo W, Osés-Ruiz M, Garcia EO, Soanes DM, Littlejohn GR, Hacker C, Correia A, Valent B, Talbot NJ (2018) A single fungal MAP kinase controls plant cell-to-cell invasion by the rice blast fungus. Science 359(6382):1399–1403.  https://doi.org/10.1126/science.aaq0892 Google Scholar
  32. Sambrook J, Frisch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  33. Saunders DG, Aves SJ, Talbot NJ (2010) Cell cycle–mediated regulation of plant infection by the rice blast fungus. Plant Cell 22:497–507.  https://doi.org/10.1105/tpc.109.072447 Google Scholar
  34. Singh B, Wu PYJ (2019) Regulation of the program of DNA replication by CDK: new findings and perspectives. Curr Genet 65:79.  https://doi.org/10.1007/s00294-018-0860-6 Google Scholar
  35. Song JH, Wei W, Lv B, Lin Y, Yin WX, Peng YL, Schnabel G, Huang JB, Jiang DH, Luo CX (2016) Rice false smut fungus hijacks the rice nutrients supply by blocking and mimicking the fertilization of rice ovary. Environ Microbiol 18:3840–3849.  https://doi.org/10.1111/1462-2920.13343 Google Scholar
  36. Tang YX, Jin J, Hu DW, Yong ML, Xu Y, He LP (2013) Elucidation of the infection process of Ustilaginoidea virens (teleomorph: Villosiclava virens) in rice spikelets. Plant Pathol 62:1–8.  https://doi.org/10.1111/j.1365-3059.2012.02629.x Google Scholar
  37. Turrà D, Segorbe D, Di Pietro A (2014) Protein kinases in plant-pathogenic fungi: conserved regulators of infection. Annu Rev Phytopathol 52:267–288.  https://doi.org/10.1146/annurev-phyto-102313-050143 Google Scholar
  38. Ubersax JA, Woodbury EL, Quang PN, Paraz M, Blethrow JD, Shah K, Shokat KM, Morgan DO (2003) Targets of the cyclin-dependent kinase Cdk1. Nature 425(6960):859.  https://doi.org/10.1038/nature02062 Google Scholar
  39. Xie SL, Wang YF, Wei W, Li CY, Liu Y, Qu JS, Meng QH, Lin Y, Yin WX, Luo CX (2019) The bax inhibitor UvBI-1, a negative regulator of mycelial growth and conidiation, mediates stress response and is critical for pathogenicity of the rice false smut fungus Ustilaginoidea virens. Curr Genet.  https://doi.org/10.1007/s00294-019-00970-2 Google Scholar
  40. Xu JR, Hamer JE (1996) MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea. Gene Dev 10(21):2696–2706.  https://doi.org/10.1101/gad.10.21.2696 Google Scholar
  41. Yin WX, Cui P, Wei W, Lin Y, Luo CX (2017) Genome-wide identification and analysis of the basic leucine zipper (bZIP) transcription factor gene family in Ustilaginoidea virens. Genome 60(12):1051–1059.  https://doi.org/10.1139/gen-2017-0089 Google Scholar
  42. Yu MN, Yu JJ, Hu JK, Huang L, Wang YH, Yin XL, Nie YF, Meng XK, Wang WD, Liu YF (2015) Identification of pathogenicity-related genes in the rice pathogen Ustilaginoidea virens through random insertional mutagenesis. Fungal Genet Biol 76:10–19.  https://doi.org/10.1016/j.fgb.2015.01.004 Google Scholar
  43. Zhang Y, Zhang K, Fang AF, Han YQ, Yang J, Xue MF, Bao JD, Hu WD, Zhou B, Sun XY et al (2014) Specific adaptation of Ustilaginoidea virens in occupying host florets revealed by comparative and functional genomics. Nat Commun 5:3849.  https://doi.org/10.1038/ncomms4849 Google Scholar
  44. Zhao X, Kim Y, Park G, Xu JR (2005) A mitogen-activated protein kinase cascade regulating infection-related morphogenesis in Magnaporthe grisea. Plant Cell 17:1317–1329.  https://doi.org/10.1105/tpc.104.029116 Google Scholar
  45. Zhao X, Mehrabi R, Xu JR (2007) Mitogen-activated protein kinase pathways and fungal pathogenesis. Eukaryot Cell 6:1701–1714.  https://doi.org/10.1128/EC.00216-07 Google Scholar
  46. Zheng L, Campbell M, Murphy J, Lam S, Xu JR (2000) The BMP1 gene is essential for pathogenicity in the gray mold fungus Botrytis cinerea. Mol Plant Microbe Interact 13(7):724–732.  https://doi.org/10.1094/MPMI.2000.13.7.724 Google Scholar
  47. Zheng DW, Wang Y, Han Y, Xu JR, Wang CF (2016) UvHOG1 is important for hyphal growth and stress responses in the rice false smut fungus Ustilaginoidea virens. Sci Rep 6:24824.  https://doi.org/10.1038/srep24824 Google Scholar
  48. Zheng MT, Ding H, Huang L, Wang YH, Yu MN, Zheng R, Yu JJ, Liu YF (2017) Low-affinity iron transport protein Uvt3277 is important for pathogenesis in the rice false smut fungus Ustilaginoidea virens. Curr Genet 63(1):131–144.  https://doi.org/10.1007/s00294-016-0620-4 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jintian Tang
    • 1
  • Jing Bai
    • 1
  • Xiaoyang Chen
    • 1
  • Lu Zheng
    • 1
  • Hao Liu
    • 1
  • Junbin Huang
    • 1
    Email author
  1. 1.The Key Lab of Plant Pathology of Hubei ProvinceHuazhong Agricultural UniversityWuhanPeople’s Republic of China

Personalised recommendations