Opportunities for new studies of nuclear DNA replication enzymology in budding yeast

  • Marta A. Garbacz
  • Scott A. Lujan
  • Thomas A. KunkelEmail author


Three major eukaryotic DNA polymerases, Polymerases α, δ, and ε (Pols α, δ, and ε), perform the fundamental process of DNA synthesis at the replication fork both accurately and efficiently. In trying to understand the necessity and flexibility of the polymerase usage, we recently reported that budding yeast cells lacking Pol ε exonuclease and polymerase domains (pol2-16) survive, but have severe growth defects, checkpoint activation, increased level of dNTP pools as well as significant increase in the mutation rates. Herein, we suggest new opportunities to distinguish the roles of Pol ε from those of two other eukaryotic B-family DNA polymerases, Pols δ and ζ.


Genome stability DNA replication DNA polymerases Polymerase epsilon (Pol ε) Polymerase delta (Pol δ) Polymerase zeta (Pol ζ) 



We thank Mercy Arana and Jessica Williams for critical reading of and thoughtful comments on the manuscript.


Division of Intramural Research of the NIH, NIEHS [Z01 ES065070 to T.A.K.].


  1. Aria V, Yeeles JTP (2018) Mechanism of bidirectional leading-strand synthesis establishment at eukaryotic DNA replication origins. Mol Cell. Google Scholar
  2. Barbari SR, Shcherbakova PV (2017) Replicative DNA polymerase defects in human cancers: consequences, mechanisms, and implications for therapy. DNA Repair 56:16–25. CrossRefGoogle Scholar
  3. Bębenek A, Ziuzia-Graczyk I (2018) Fidelity of DNA replication—a matter of proofreading. Curr Genet 64:985–996. CrossRefGoogle Scholar
  4. Bellelli R, Borel V, Logan C et al (2018) Pol ε instability drives replication stress, abnormal development, and tumorigenesis. Mol Cell 70:707–721.e7. CrossRefGoogle Scholar
  5. Burgers PMJ, Kunkel TA (2017) Eukaryotic DNA replication fork. Annu Rev Biochem 86:417–438. CrossRefGoogle Scholar
  6. Cerami E, Gao J, Dogrusoz U et al (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2:401–404. CrossRefGoogle Scholar
  7. Clausen AR, Lujan SA, Burkholder AB et al (2015) Tracking replication enzymology in vivo by genome-wide mapping of ribonucleotide incorporation. Nat Struct Mol Biol 22:185–191. CrossRefGoogle Scholar
  8. Flood CL, Rodriguez GP, Bao G et al (2015) Replicative DNA polymerase δ but not ε proofreads errors in Cis and in Trans. PLoS Genet 11:e1005049. CrossRefGoogle Scholar
  9. Forbes SA, Beare D, Gunasekaran P et al (2015) COSMIC: exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Res 43:D805–D811. CrossRefGoogle Scholar
  10. Garbacz MA, Lujan SA, Burkholder AB et al (2018) Evidence that DNA polymerase δ contributes to initiating leading strand DNA replication in Saccharomyces cerevisiae. Nat Commun 9:858. CrossRefGoogle Scholar
  11. Garbacz MA, Cox PB, Sharma S et al (2019) The absence of the catalytic domains of Saccharomyces cerevisiae DNA polymerase ϵ strongly reduces DNA replication fidelity. Nucleic Acids Res. Google Scholar
  12. Guenther M, Veninga V, Kumbrink J et al (2018) POLE gene hotspot mutations in advanced pancreatic cancer. J Cancer Res Clin Oncol 144:2161–2166. CrossRefGoogle Scholar
  13. Kandoth C, Schultz N, Cherniack AD et al (2013) Integrated genomic characterization of endometrial carcinoma. Nature 497:67–73. CrossRefGoogle Scholar
  14. Lessel D, Hisama FM, Szakszon K et al (2015) POLD1 germline mutations in patients initially diagnosed with werner syndrome. Hum Mutat 36:1070–1079. CrossRefGoogle Scholar
  15. Li HD, Cuevas I, Zhang M et al (2018) Polymerase-mediated ultramutagenesis in mice produces diverse cancers with high mutational load. J Clin Invest 128:4179–4191. CrossRefGoogle Scholar
  16. Loeb LA, Springgate CF, Battula N (1974) Errors in DNA replication as a basis of malignant changes. Cancer Res 34:2311–2321Google Scholar
  17. Logan CV, Murray JE, Parry DA et al (2018) DNA polymerase epsilon deficiency causes IMAGe syndrome with variable immunodeficiency. Am J Hum Genet 103:1038–1044. CrossRefGoogle Scholar
  18. Lujan SA, Williams JS, Kunkel TA (2016) DNA polymerases divide the labor of genome replication. Trends Cell Biol 26:640–654. CrossRefGoogle Scholar
  19. Lydeard JR, Jain S, Yamaguchi M, Haber JE (2007) Break-induced replication and telomerase-independent telomere maintenance require Pol32. Nature 448:820–823. CrossRefGoogle Scholar
  20. Makarova AV, Burgers PM (2015) Eukaryotic DNA polymerase zeta. DNA Repair 29:47–55. CrossRefGoogle Scholar
  21. Makarova AV, Nick McElhinny SA, Watts BE et al (2014) Ribonucleotide incorporation by yeast DNA polymerase ζ. DNA Repair 18:63–67. CrossRefGoogle Scholar
  22. Miyabe I, Mizuno K, Keszthelyi A et al (2015) Polymerase δ replicates both strands after homologous recombination-dependent fork restart. Nat Struct Mol Biol 22:932–938. CrossRefGoogle Scholar
  23. Nicolas E, Golemis EA, Arora S (2016) POLD1: central mediator of DNA replication and repair, and implication in cancer and other pathologies. Gene 590:128–141. CrossRefGoogle Scholar
  24. Pachlopnik Schmid J, Lemoine R, Nehme N et al (2012) Polymerase ε1 mutation in a human syndrome with facial dysmorphism, immunodeficiency, livedo, and short stature (“FILS syndrome”). J Exp Med 209:2323–2330. CrossRefGoogle Scholar
  25. Palles C, Cazier JB, Howarth KM et al (2013) Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas. Nat Genet 45:136–144. CrossRefGoogle Scholar
  26. Parkash V, Kulkarni Y, Ter Beek J et al (2019) Structural consequence of the most frequently recurring cancer-associated substitution in DNA polymerase epsilon. Nat Commun 10:373. CrossRefGoogle Scholar
  27. Pavlov YI, Frahm C, Nick McElhinny SA et al (2006) Evidence that errors made by DNA polymerase alpha are corrected by DNA polymerase delta. Curr Biol 16:202–207. CrossRefGoogle Scholar
  28. Pelosini C, Martinelli S, Ceccarini G et al (2014) Identification of a novel mutation in the polymerase delta 1 (POLD1) gene in a lipodystrophic patient affected by mandibular hypoplasia, deafness, progeroid features (MDPL) syndrome. Metabolism 63:1385–1389. CrossRefGoogle Scholar
  29. Perrino FW, Loeb LA (1990) Hydrolysis of 3′-terminal mispairs in vitro by the 3′–5′ exonuclease of DNA polymerase delta permits subsequent extension by DNA polymerase alpha. Biochemistry 29:5226–5231. CrossRefGoogle Scholar
  30. Reinier F, Zoledziewska M, Hanna D et al (2015) Mandibular hypoplasia, deafness, progeroid features and lipodystrophy (MDPL) syndrome in the context of inherited lipodystrophies. Metabolism 64:1530–1540. CrossRefGoogle Scholar
  31. St Charles JA, Liberti SE, Williams JS et al (2015) Quantifying the contributions of base selectivity, proofreading and mismatch repair to nuclear DNA replication in Saccharomyces cerevisiae. DNA Repair 31:41–51. CrossRefGoogle Scholar
  32. Starokadomskyy P, Gemelli T, Rios JJ et al (2016) DNA polymerase-α regulates the activation of type I interferons through cytosolic RNA:DNA synthesis. Nat Immunol 17:495–504. CrossRefGoogle Scholar
  33. Szwajczak E, Fijalkowska IJ, Suski C (2018) The importance of an interaction network for proper DNA polymerase ζ heterotetramer activity. Curr Genet 64:575–580. CrossRefGoogle Scholar
  34. Van Esch H, Colnaghi R, Freson K et al (2019) Defective DNA polymerase α-primase leads to X-linked intellectual disability associated with severe growth retardation, microcephaly, and hypogonadism. Am J Hum Genet 104:957–967. CrossRefGoogle Scholar
  35. Vande Perre P, Siegfried A, Corsini C et al (2019) Germline mutation p. N363K in POLE is associated with an increased risk of colorectal cancer and giant cell glioblastoma. Fam Cancer 18:173–178. CrossRefGoogle Scholar
  36. Weedon MN, Ellard S, Prindle MJ et al (2013) An in-frame deletion at the polymerase active site of POLD1 causes a multisystem disorder with lipodystrophy. Nat Genet 45:947–950. CrossRefGoogle Scholar
  37. Xing X, Kane DP, Bulock CR et al (2019) A recurrent cancer-associated substitution in DNA polymerase epsilon produces a hyperactive enzyme. Nat Commun 10:374. CrossRefGoogle Scholar
  38. Yeeles JTP, Janska A, Early A, Diffley JFX (2017) How the eukaryotic replisome achieves rapid and efficient DNA replication. Mol Cell 65:105–116. CrossRefGoogle Scholar

Copyright information

© This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2019

Authors and Affiliations

  • Marta A. Garbacz
    • 1
  • Scott A. Lujan
    • 2
  • Thomas A. Kunkel
    • 2
    Email author
  1. 1.Institute of Molecular Biology (IMB)MainzGermany
  2. 2.Genome Integrity and Structural Biology LaboratoryNational Institute of Environmental Health Sciences, NIEHS, NIH, DHHSResearch Triangle ParkUSA

Personalised recommendations