Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

The functional complexity of the RNA-binding protein Yra1: mRNA biogenesis, genome stability and DSB repair

  • 232 Accesses

Abstract

The mRNA export adaptor Yra1 is essential in S. cerevisiae, and conserved from yeast to human (ALY/REF). It is well characterized for its function during transcription elongation, 3′ processing and mRNA export. Recently, different studies linked Yra1 to genome stability showing that Yra1 overexpression causes DNA Double Strand Breaks through DNA:RNA hybrids stabilization, and that Yra1 depletion affects DSB repair. However, the mechanisms through which Yra1 contributes to genome stability maintenance are not fully understood. Interestingly, our results showed that the Yra1 C-box domain is required for Yra1 recruitment to an HO-induced irreparable DSB following extensive resection, and that it is essential to repair an HO-induced reparable DSB. Furthermore, we defined that the C-box domain of Yra1 plays a crucial role in DSB repair through homologous recombination but not through non-homologous end joining. Future studies aim at deciphering the mechanism by which Yra1 contributes to DSB repair by searching for Yra1 partners important for this process. This review focuses on the functional complexity of the Yra1 protein, not only summarizing its role in mRNA biogenesis but also emphasizing its auto-regulation and implication in genome integrity either through DNA:RNA hybrids stabilization or DNA double strand break repair in S. cerevisiae.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abruzzi KC, Lacadie S, Rosbash M (2004) Biochemical analysis of TREX complex recruitment to intronless and intron-containing yeast genes. EMBO J 23(13):2620–2631

  2. Boeynaems S, Alberti S, Fawzi NL, Mittag T, Polymenidou M, Rousseau F, Schymkowitz J, Shorter J, Wolozin B, Van Den Bosch L, Tompa P, Fuxreiter M (2018) Protein phase separation: a new phase in cell biology. Trends Cell Biol 28(6):420–435

  3. Bruhn L, Munnerlyn A, Grosschedl R (1997) ALY, a context-dependent coactivator of LEF-1 and AML-1, is required for TCRalpha enhancer function. Genes Dev 11(5):640–653

  4. Chan YA, Hieter P, Stirling PC (2014) Mechanisms of genome instability induced by RNA-processing defects. Trends Genet 30(6):245–253

  5. Cheng H, Dufu K, Lee CS, Hsu JL, Dias A, Reed R (2006) Human mRNA export machinery recruited to the 5′ end of mRNA. Cell 127(7):1389–1400

  6. Christiano R, Nagaraj N, Frohlich F, Walther TC (2014) Global proteome turnover analyses of the Yeasts S. cerevisiae and S. pombe. Cell Rep 9(5):1959–1965

  7. Dias AP, Dufu K, Lei H, Reed R (2010) A role for TREX components in the release of spliced mRNA from nuclear speckle domains. Nat Commun 1:97

  8. Dieppois G, Iglesias N, Stutz F (2006) Cotranscriptional recruitment to the mRNA export receptor Mex67p contributes to nuclear pore anchoring of activated genes. Mol Cell Biol 26(21):7858–7870

  9. Dominguez-Sanchez MS, Saez C, Japon MA, Aguilera A, Luna R (2011) Differential expression of THOC1 and ALY mRNP biogenesis/export factors in human cancers. BMC Cancer 11:77

  10. Dong S, Li C, Zenklusen D, Singer RH, Jacobson A, He F (2007) YRA1 autoregulation requires nuclear export and cytoplasmic Edc3p-mediated degradation of its pre-mRNA. Mol Cell 25(4):559–573

  11. El Hage A, Webb S, Kerr A, Tollervey D (2014) Genome-wide distribution of RNA–DNA hybrids identifies RNase H targets in tRNA genes, retrotransposons and mitochondria. PLoS Genet 10(10):e1004716

  12. Espinet C, de la Torre MA, Aldea M, Herrero E (1995) An efficient method to isolate yeast genes causing overexpression-mediated growth arrest. Yeast 11(1):25–32

  13. Freudenreich CH (2018) R-loops: targets for nuclease cleavage and repeat instability. Curr Genet 64(4):789–794

  14. Garcia-Rubio M, Aguilera P, Lafuente-Barquero J, Ruiz JF, Simon MN, Geli V, Rondon AG, Aguilera A (2018) Yra1-bound RNA-DNA hybrids cause orientation-independent transcription-replication collisions and telomere instability. Genes Dev 32(13–14):965–977

  15. Gavalda S, Santos-Pereira JM, Garcia-Rubio ML, Luna R, Aguilera A (2016) Excess of Yra1 RNA-binding factor causes transcription-dependent genome instability, replication impairment and telomere shortening. PLoS Genet 12(4):e1005966

  16. Graf M, Bonetti D, Lockhart A, Serhal K, Kellner V, Maicher A, Jolivet P, Teixeira MT, Luke B (2017) Telomere length determines TERRA and R-loop regulation through the cell cycle. Cell 170(1):72–85

  17. Gromadzka AM, Steckelberg AL, Singh KK, Hofmann K, Gehring NH (2016) A short conserved motif in ALYREF directs cap- and EJC-dependent assembly of export complexes on spliced mRNAs. Nucleic Acids Res 44(5):2348–2361

  18. Gwizdek C, Iglesias N, Rodriguez MS, Ossareh-Nazari B, Hobeika M, Divita G, Stutz F, Dargemont C (2006) Ubiquitin-associated domain of Mex67 synchronizes recruitment of the mRNA export machinery with transcription. Proc Natl Acad Sci USA 103(44):16376–16381

  19. Horigome C, Gasser SM (2016) SUMO wrestles breaks to the nuclear ring’s edge. Cell Cycle 15(22):3011–3013

  20. Iglesias N, Tutucci E, Gwizdek C, Vinciguerra P, Von Dach E, Corbett AH, Dargemont C, Stutz F (2010) Ubiquitin-mediated mRNP dynamics and surveillance prior to budding yeast mRNA export. Genes Dev 24(17):1927–1938

  21. Infantino V, Tutucci E, Yeh Martin N, Zihlmann A, Garcia-Molinero V, Silvano G, Palancade B, Stutz F (2019) The mRNA export adaptor Yra1 contributes to DNA double-strand break repair through its C-box domain. PLoS One 14(4):e0206336

  22. Johnson SA, Cubberley G, Bentley DL (2009) Cotranscriptional recruitment of the mRNA export factor Yra1 by direct interaction with the 3′ end processing factor Pcf11. Mol Cell 33(2):215–226

  23. Johnson SA, Kim H, Erickson B, Bentley DL (2011) The export factor Yra1 modulates mRNA 3′ end processing. Nat Struct Mol Biol 18(10):1164–1171

  24. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10(6):845–858

  25. Kohler A, Hurt E (2007) Exporting RNA from the nucleus to the cytoplasm. Nat Rev Mol Cell Biol 8(10):761–773

  26. Lee SE, Moore JK, Holmes A, Umezu K, Kolodner RD, Haber JE (1998) Saccharomyces Ku70, mre11/rad50 and RPA proteins regulate adaptation to G2/M arrest after DNA damage. Cell 94(3):399–409

  27. Linder P, Stutz F (2001) mRNA export: travelling with DEAD box proteins. Curr Biol 11(23):R961–R963

  28. Lopez PJ, Seraphin B (1999) Genomic-scale quantitative analysis of yeast pre-mRNA splicing: implications for splice-site recognition. RNA 5(9):1135–1137

  29. Ma WK, Cloutier SC, Tran EJ (2013) The DEAD-box protein Dbp2 functions with the RNA-binding protein Yra1 to promote mRNP assembly. J Mol Biol 425(20):3824–3838

  30. Ma WK, Paudel BP, Xing Z, Sabath IG, Rueda D, Tran EJ (2016) Recruitment, duplex unwinding and protein-mediated inhibition of the dead-box RNA helicase Dbp2 at actively transcribed chromatin. J Mol Biol 428(6):1091–1106

  31. Manfrini N, Clerici M, Wery M, Colombo CV, Descrimes M, Morillon A, d’Adda di Fagagna F, Longhese MP (2015) Resection is responsible for loss of transcription around a double-strand break in Saccharomyces cerevisiae. Elife 4:e08942

  32. Mazina OM, Keskin H, Hanamshet K, Storici F, Mazin AV (2017) Rad52 inverse strand exchange drives RNA-templated DNA double-strand break repair. Mol Cell 67(1):19–29

  33. Meers C, Keskin H, Storici F (2016) DNA repair by RNA: templated, or not templated, that is the question. DNA Repair (Amst) 44:17–21

  34. Michelini F, Pitchiaya S, Vitelli V, Sharma S, Gioia U, Pessina F, Cabrini M, Wang Y, Capozzo I, Iannelli F, Matti V, Francia S, Shivashankar GV, Walter NG, d’Adda di Fagagna F (2017) Damage-induced lncRNAs control the DNA damage response through interaction with DDRNAs at individual double-strand breaks. Nat Cell Biol 19(12):1400–1411

  35. Mikolaskova B, Jurcik M, Cipakova I, Kretova M, Chovanec M, Cipak L (2018) Maintenance of genome stability: the unifying role of interconnections between the DNA damage response and RNA-processing pathways. Curr Genet 64(5):971–983

  36. Nagai S, Dubrana K, Tsai-Pflugfelder M, Davidson MB, Roberts TM, Brown GW, Varela E, Hediger F, Gasser SM, Krogan NJ (2008) Functional targeting of DNA damage to a nuclear pore-associated SUMO-dependent ubiquitin ligase. Science 322(5901):597–602

  37. Ohle C, Tesorero R, Schermann G, Dobrev N, Sinning I, Fischer T (2016) Transient RNA–DNA hybrids are required for efficient double-strand break repair. Cell 167(4):1001–1013

  38. Papamichos-Chronakis M, Peterson CL (2013) Chromatin and the genome integrity network. Nat Rev Genet 14(1):62–75

  39. Portman DS, O’Connor JP, Dreyfuss G (1997) YRA1, an essential Saccharomyces cerevisiae gene, encodes a novel nuclear protein with RNA annealing activity. RNA 3(5):527–537

  40. Preker PJ, Guthrie C (2006) Autoregulation of the mRNA export factor Yra1p requires inefficient splicing of its pre-mRNA. RNA 12(6):994–1006

  41. Preker PJ, Kim KS, Guthrie C (2002) Expression of the essential mRNA export factor Yra1p is autoregulated by a splicing-dependent mechanism. RNA 8(8):969–980

  42. Reed R (2003) Coupling transcription, splicing and mRNA export. Curr Opin Cell Biol 15(3):326–331

  43. Reed R, Hurt E (2002) A conserved mRNA export machinery coupled to pre-mRNA splicing. Cell 108(4):523–531

  44. Ren Y, Schmiege P, Blobel G (2017) Structural and biochemical analyses of the DEAD-box ATPase Sub2 in association with THO or Yra1. Elife 6:e20070

  45. Rodriguez-Navarro S, Strasser K, Hurt E (2002) An intron in the YRA1 gene is required to control Yra1 protein expression and mRNA export in yeast. EMBO Rep 3(5):438–442

  46. Saito Y, Kasamatsu A, Yamamoto A, Shimizu T, Yokoe H, Sakamoto Y, Ogawara K, Shiiba M, Tanzawa H, Uzawa K (2013) ALY as a potential contributor to metastasis in human oral squamous cell carcinoma. J Cancer Res Clin Oncol 139(4):585–594

  47. Shchepachev V, Bresson S, Spanos C, Petfalski E, Fischer L, Rappsilber J, Tollervey D (2019) Defining the RNA interactome by total RNA-associated protein purification. Mol Syst Biol 15(4):e8689

  48. Stirling PC, Chan YA, Minaker SW, Aristizabal MJ, Barrett I, Sipahimalani P, Kobor MS, Hieter P (2012) R-loop-mediated genome instability in mRNA cleavage and polyadenylation mutants. Genes Dev 26(2):163–175

  49. Strasser K, Hurt E (2001) Splicing factor Sub2p is required for nuclear mRNA export through its interaction with Yra1p. Nature 413(6856):648–652

  50. Strasser K, Masuda S, Mason P, Pfannstiel J, Oppizzi M, Rodriguez-Navarro S, Rondon AG, Aguilera A, Struhl K, Reed R, Hurt E (2002) TREX is a conserved complex coupling transcription with messenger RNA export. Nature 417(6886):304–308

  51. Stutz F, Izaurralde E (2003) The interplay of nuclear mRNP assembly, mRNA surveillance and export. Trends Cell Biol 13(6):319–327

  52. Stutz F, Bachi A, Doerks T, Braun IC, Seraphin B, Wilm M, Bork P, Izaurralde E (2000) REF, an evolutionary conserved family of hnRNP-like proteins, interacts with TAP/Mex67p and participates in mRNA nuclear export. RNA 6(4):638–650

  53. Tudek A, Schmid M, Jensen TH (2019) Escaping nuclear decay: the significance of mRNA export for gene expression. Curr Genet 65(2):473–476

  54. Tutucci E, Stutz F (2011) Keeping mRNPs in check during assembly and nuclear export. Nat Rev Mol Cell Biol 12(6):377–384

  55. Virbasius CM, Wagner S, Green MR (1999) A human nuclear-localized chaperone that regulates dimerization, DNA binding, and transcriptional activity of bZIP proteins. Mol Cell 4(2):219–228

  56. Wang P, Byrum S, Fowler FC, Pal S, Tackett AJ, Tyler JK (2017) Proteomic identification of histone post-translational modifications and proteins enriched at a DNA double-strand break. Nucleic Acids Res 45(19):10923–10940

  57. Wickramasinghe VO, Laskey RA (2015) Control of mammalian gene expression by selective mRNA export. Nat Rev Mol Cell Biol 16(7):431–442

  58. Xie Y, Kerscher O, Kroetz MB, McConchie HF, Sung P, Hochstrasser M (2007) The yeast Hex3.Slx8 heterodimer is a ubiquitin ligase stimulated by substrate sumoylation. J Biol Chem 282(47):34176–34184

  59. Zenklusen D, Vinciguerra P, Strahm Y, Stutz F (2001) The yeast hnRNP-like proteins Yra1p and Yra2p participate in mRNA export through interaction with Mex67p. Mol Cell Biol 21(13):4219–4232

  60. Zenklusen D, Vinciguerra P, Wyss JC, Stutz F (2002) Stable mRNP formation and export require cotranscriptional recruitment of the mRNA export factors Yra1p and Sub2p by Hpr1p. Mol Cell Biol 22(23):8241–8253

  61. Zhao X, Wei C, Li J, Xing P, Li J, Zheng S, Chen X (2017) Cell cycle-dependent control of homologous recombination. Acta Biochim Biophys Sin (Shanghai) 49(8):655–668

  62. Zhao H, Zhu M, Limbo O, Russell P (2018) RNase H eliminates R-loops that disrupt DNA replication but is nonessential for efficient DSB repair. EMBO Rep 19(5):e45335

Download references

Acknowledgements

We would like to thank Nataliia Serbyn and Julien Soudet for critical reading of the manuscript.

Author information

Correspondence to Françoise Stutz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by M. Kupiec.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Infantino, V., Stutz, F. The functional complexity of the RNA-binding protein Yra1: mRNA biogenesis, genome stability and DSB repair. Curr Genet 66, 63–71 (2020). https://doi.org/10.1007/s00294-019-01011-8

Download citation

Keywords

  • Yra1
  • ALY
  • Transcription
  • mRNA biogenesis
  • Genome stability
  • R-loops
  • Double strand break (DSB) repair