Advertisement

Current Genetics

, Volume 65, Issue 5, pp 1089–1098 | Cite as

Transcriptional silencing of centromere repeats by heterochromatin safeguards chromosome integrity

  • Takuro NakagawaEmail author
  • Akiko K. Okita
Review

Abstract

The centromere region of chromosomes consists of repetitive DNA sequences, and is, therefore, one of the fragile sites of chromosomes in many eukaryotes. In the core region, the histone H3 variant CENP-A forms centromere-specific nucleosomes that are required for kinetochore formation. In the pericentromeric region, histone H3 is methylated at lysine 9 (H3K9) and heterochromatin is formed. The transcription of pericentromeric repeats by RNA polymerase II is strictly repressed by heterochromatin. However, the role of the transcriptional silencing of the pericentromeric repeats remains largely unclear. Here, we focus on the chromosomal rearrangements that occur at the repetitive centromeres, and highlight our recent studies showing that transcriptional silencing by heterochromatin suppresses gross chromosomal rearrangements (GCRs) at centromeres in fission yeast. Inactivation of the Clr4 methyltransferase, which is essential for the H3K9 methylation, increased GCRs with breakpoints located in centromeric repeats. However, mutations in RNA polymerase II or the transcription factor Tfs1/TFIIS, which promotes restart of RNA polymerase II following its backtracking, reduced the GCRs that occur in the absence of Clr4, demonstrating that heterochromatin suppresses GCRs by repressing the Tfs1-dependent transcription. We also discuss how the transcriptional restart gives rise to chromosomal rearrangements at centromeres.

Keywords

Pericentromere Heterochromatin Transcription DNA repeat Gross chromosomal rearrangement Fission yeast 

Notes

Acknowledgements

We would like to thank Dr. Yumiko Kubota, Dr. Faria Zafar, Jie Su, Crystal Tang, and Taishin Zaima for critical reading of this manuscript. This work was supported by a JSPS KAKENHI Grant JP18K06060 to T. N. We apologize to our colleagues whose important contributions to this field could not be cited due to space limitations.

References

  1. Allshire RC, Karpen GH (2008) Epigenetic regulation of centromeric chromatin: old dogs, new tricks? Nat Rev Genet 9:923–937.  https://doi.org/10.1038/nrg2466 CrossRefGoogle Scholar
  2. Allshire RC, Madhani HD (2018) Ten principles of heterochromatin formation and function. Nat Rev Mol Cell Biol 19:229–244.  https://doi.org/10.1038/nrm.2017.119 CrossRefGoogle Scholar
  3. Bannister AJ, Zegerman P, Partridge JF, Miska EA, Thomas JO, Allshire RC, Kouzarides T (2001) Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410:120–124.  https://doi.org/10.1038/35065138 CrossRefGoogle Scholar
  4. Barra V, Fachinetti D (2018) The dark side of centromeres: types, causes and consequences of structural abnormalities implicating centromeric DNA. Nat Commun 9:4340.  https://doi.org/10.1038/s41467-018-06545-y CrossRefGoogle Scholar
  5. Bayne EH, White SA, Kagansky A, Bijos DA, Sanchez-Pulido L, Hoe KL, Kim DU, Park HO, Ponting CP, Rappsilber J, Allshire RC (2010) Stc1: a critical link between RNAi and chromatin modification required for heterochromatin integrity. Cell 140:666–677.  https://doi.org/10.1016/j.cell.2010.01.038 CrossRefGoogle Scholar
  6. Bernard P, Maure JF, Partridge JF, Genier S, Javerzat JP, Allshire RC (2001) Requirement of heterochromatin for cohesion at centromeres. Science 294:2539–2542.  https://doi.org/10.1126/science.1064027 CrossRefGoogle Scholar
  7. Brown WR, Thomas G, Lee NC, Blythe M, Liti G, Warringer J, Loose MW (2014) Kinetochore assembly and heterochromatin formation occur autonomously in Schizosaccharomyces pombe. Proc Natl Acad Sci USA 111:1903–1908.  https://doi.org/10.1073/pnas.1216934111 CrossRefGoogle Scholar
  8. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, Antipin Y, Reva B, Goldberg AP, Sander C, Schultz N (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2:401–404.  https://doi.org/10.1158/2159-8290.CD-12-0095 CrossRefGoogle Scholar
  9. Chen ES, Zhang K, Nicolas E, Cam HP, Zofall M, Grewal SI (2008) Cell cycle control of centromeric repeat transcription and heterochromatin assembly. Nature 451:734–737.  https://doi.org/10.1038/nature06561 CrossRefGoogle Scholar
  10. Chikashige Y, Kinoshita N, Nakaseko Y, Matsumoto T, Murakami S, Niwa O, Yanagida M (1989) Composite motifs and repeat symmetry in S. pombe centromeres: direct analysis by integration of NotI restriction sites. Cell 57:739–751.  https://doi.org/10.1016/0092-8674(89)90789-7 CrossRefGoogle Scholar
  11. Chiolo I, Minoda A, Colmenares SU, Polyzos A, Costes SV, Karpen GH (2011) Double-strand breaks in heterochromatin move outside of a dynamic HP1a domain to complete recombinational repair. Cell 144:732–744.  https://doi.org/10.1016/j.cell.2011.02.012 CrossRefGoogle Scholar
  12. Dhatchinamoorthy K, Mattingly M, Gerton JL (2018) Regulation of kinetochore configuration during mitosis. Curr Genet 64:1197–1203.  https://doi.org/10.1007/s00294-018-0841-9 CrossRefGoogle Scholar
  13. Djupedal I, Portoso M, Spahr H, Bonilla C, Gustafsson CM, Allshire RC, Ekwall K (2005) RNA Pol II subunit Rpb7 promotes centromeric transcription and RNAi-directed chromatin silencing. Genes Dev 19:2301–2306.  https://doi.org/10.1101/gad.344205 CrossRefGoogle Scholar
  14. Ellermeier C, Higuchi EC, Phadnis N, Holm L, Geelhood JL, Thon G, Smith GR (2010) RNAi and heterochromatin repress centromeric meiotic recombination. Proc Natl Acad Sci USA 107:8701–8705.  https://doi.org/10.1073/pnas.0914160107 CrossRefGoogle Scholar
  15. Fischer T, Cui B, Dhakshnamoorthy J, Zhou M, Rubin C, Zofall M, Veenstra TD, Grewal SI (2009) Diverse roles of HP1 proteins in heterochromatin assembly and functions in fission yeast. Proc Natl Acad Sci USA 106:8998–9003.  https://doi.org/10.1073/pnas.0813063106 CrossRefGoogle Scholar
  16. Garcia-Muse T, Aguilera A (2016) Transcription-replication conflicts: how they occur and how they are resolved. Nat Rev Mol Cell Biol 17:553–563.  https://doi.org/10.1038/nrm.2016.88 CrossRefGoogle Scholar
  17. Gravholt CH, Friedrich U, Caprani M, Jorgensen AL (1992) Breakpoints in Robertsonian translocations are localized to satellite III DNA by fluorescence in situ hybridization. Genomics 14:924–930.  https://doi.org/10.1016/S0888-7543(05)80113-2 CrossRefGoogle Scholar
  18. Grewal SI, Jia S (2007) Heterochromatin revisited. Nat Rev Genet 8:35–46.  https://doi.org/10.1038/nrg2008 CrossRefGoogle Scholar
  19. Hansen RS, Wijmenga C, Luo P, Stanek AM, Canfield TK, Weemaes CM, Gartler SM (1999) The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome. Proc Natl Acad Sci USA 96:14412–14417.  https://doi.org/10.1073/pnas.96.25.14412 CrossRefGoogle Scholar
  20. Henikoff S, Ahmad K, Malik HS (2001) The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293:1098–1102.  https://doi.org/10.1126/science.1062939 CrossRefGoogle Scholar
  21. Hook EB, Warburton D (1983) The distribution of chromosomal genotypes associated with Turner's syndrome: livebirth prevalence rates and evidence for diminished fetal mortality and severity in genotypes associated with structural X abnormalities or mosaicism. Hum Genet 64:24–27.  https://doi.org/10.1007/BF00289473 CrossRefGoogle Scholar
  22. Hoskins RA, Carlson JW, Kennedy C, Acevedo D, Evans-Holm M, Frise E, Wan KH, Park S, Mendez-Lago M, Rossi F, Villasante A, Dimitri P, Karpen GH, Celniker SE (2007) Sequence finishing and mapping of Drosophila melanogaster heterochromatin. Science 316:1625–1628.  https://doi.org/10.1126/science.1139816 CrossRefGoogle Scholar
  23. Izban MG, Luse DS (1992) The RNA polymerase II ternary complex cleaves the nascent transcript in a 3' → 5' direction in the presence of elongation factor SII. Genes Dev 6:1342–1356.  https://doi.org/10.1101/gad.6.7.1342 CrossRefGoogle Scholar
  24. Jaco I, Canela A, Vera E, Blasco MA (2008) Centromere mitotic recombination in mammalian cells. J Cell Biol 181:885–892.  https://doi.org/10.1083/jcb.200803042 CrossRefGoogle Scholar
  25. Janssen A, Colmenares SU, Karpen GH (2018) Heterochromatin: guardian of the genome. Annu Rev Cell Dev Biol 34:265–288.  https://doi.org/10.1146/annurev-cellbio-100617-062653 CrossRefGoogle Scholar
  26. Jeanpierre M, Turleau C, Aurias A, Prieur M, Ledeist F, Fischer A, Viegas-Pequignot E (1993) An embryonic-like methylation pattern of classical satellite DNA is observed in ICF syndrome. Hum Mol Genet 2:731–735.  https://doi.org/10.1093/hmg/2.6.731 CrossRefGoogle Scholar
  27. Jih G, Iglesias N, Currie MA, Bhanu NV, Paulo JA, Gygi SP, Garcia BA, Moazed D (2017) Unique roles for histone H3K9me states in RNAi and heritable silencing of transcription. Nature 547:463–467.  https://doi.org/10.1038/nature23267 CrossRefGoogle Scholar
  28. Jones KW (1970) Chromosomal and nuclear location of mouse satellite DNA in individual cells. Nature 225:912–915.  https://doi.org/10.1038/225912a0 CrossRefGoogle Scholar
  29. Kajitani T, Kato H, Chikashige Y, Tsutsumi C, Hiraoka Y, Kimura H, Ohkawa Y, Obuse C, Hermand D, Murakami Y (2017) Ser7 of RNAPII-CTD facilitates heterochromatin formation by linking ncRNA to RNAi. Proc Natl Acad Sci USA 114:E11208–E11217.  https://doi.org/10.1073/pnas.1714579115 CrossRefGoogle Scholar
  30. Kapoor S, Zhu L, Froyd C, Liu T, Rusche LN (2015) Regional centromeres in the yeast Candida lusitaniae lack pericentromeric heterochromatin. Proc Natl Acad Sci USA 112:12139–12144.  https://doi.org/10.1073/pnas.1508749112 CrossRefGoogle Scholar
  31. Kato H, Goto DB, Martienssen RA, Urano T, Furukawa K, Murakami Y (2005) RNA polymerase II is required for RNAi-dependent heterochromatin assembly. Science 309:467–469.  https://doi.org/10.1126/science.1114955 CrossRefGoogle Scholar
  32. Kireeva ML, Hancock B, Cremona GH, Walter W, Studitsky VM, Kashlev M (2005) Nature of the nucleosomal barrier to RNA polymerase II. Mol Cell 18:97–108.  https://doi.org/10.1016/j.molcel.2005.02.027 CrossRefGoogle Scholar
  33. Koumbaris G, Hatzisevastou-Loukidou H, Alexandrou A, Ioannides M, Christodoulou C, Fitzgerald T, Rajan D, Clayton S, Kitsiou-Tzeli S, Vermeesch JR, Skordis N, Antoniou P, Kurg A, Georgiou I, Carter NP, Patsalis PC (2011) FoSTeS, MMBIR and NAHR at the human proximal Xp region and the mechanisms of human Xq isochromosome formation. Hum Mol Genet 20:1925–1936.  https://doi.org/10.1093/hmg/ddr074 CrossRefGoogle Scholar
  34. Kouranti I, McLean JR, Feoktistova A, Liang P, Johnson AE, Roberts-Galbraith RH, Gould KL (2010) A global census of fission yeast deubiquitinating enzyme localization and interaction networks reveals distinct compartmentalization profiles and overlapping functions in endocytosis and polarity. PLoS Biol 8:e1000471.  https://doi.org/10.1371/journal.pbio.1000471 CrossRefGoogle Scholar
  35. Kvint K, Uhler JP, Taschner MJ, Sigurdsson S, Erdjument-Bromage H, Tempst P, Svejstrup JQ (2008) Reversal of RNA polymerase II ubiquitylation by the ubiquitin protease Ubp3. Mol Cell 30:498–506.  https://doi.org/10.1016/j.molcel.2008.04.018 CrossRefGoogle Scholar
  36. Lachner M, O'Carroll D, Rea S, Mechtler K, Jenuwein T (2001) Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410:116–120.  https://doi.org/10.1038/35065132 CrossRefGoogle Scholar
  37. Lee C, Wevrick R, Fisher RB, Ferguson-Smith MA, Lin CC (1997) Human centromeric DNAs. Hum Genet 100:291–304.  https://doi.org/10.1007/s004390050508 CrossRefGoogle Scholar
  38. Litwin I, Wysocki R (2018) New insights into cohesin loading. Curr Genet 64:53–61.  https://doi.org/10.1007/s00294-017-0723-6 CrossRefGoogle Scholar
  39. Lydeard JR, Jain S, Yamaguchi M, Haber JE (2007) Break-induced replication and telomerase-independent telomere maintenance require Pol32. Nature 448:820–823.  https://doi.org/10.1038/nature06047 CrossRefGoogle Scholar
  40. Martienssen R, Moazed D (2015) RNAi and heterochromatin assembly. Cold Spring Harb Perspect Biol 7:a019323.  https://doi.org/10.1101/cshperspect.a019323 CrossRefGoogle Scholar
  41. McKinley KL, Cheeseman IM (2016) The molecular basis for centromere identity and function. Nat Rev Mol Cell Biol 17:16–29.  https://doi.org/10.1038/nrm.2015.5 CrossRefGoogle Scholar
  42. McNulty SM, Sullivan BA (2018) Alpha satellite DNA biology: finding function in the recesses of the genome. Chromosome Res 26:115–138.  https://doi.org/10.1007/s10577-018-9582-3 CrossRefGoogle Scholar
  43. McNulty SM, Sullivan LL, Sullivan BA (2017) Human centromeres produce chromosome-specific and array-specific alpha satellite transcripts that are complexed with CENP-A and CENP-C. Dev Cell 42:226–240.  https://doi.org/10.1016/j.devcel.2017.07.001 CrossRefGoogle Scholar
  44. Nagpal H, Fukagawa T (2016) Kinetochore assembly and function through the cell cycle. Chromosoma 125:645–659.  https://doi.org/10.1007/s00412-016-0608-3 CrossRefGoogle Scholar
  45. Nakamura K, Okamoto A, Katou Y, Yadani C, Shitanda T, Kaweeteerawat C, Takahashi TS, Itoh T, Shirahige K, Masukata H, Nakagawa T (2008) Rad51 suppresses gross chromosomal rearrangement at centromere in Schizosaccharomyces pombe. EMBO J 27:3036–3046.  https://doi.org/10.1038/emboj.2008.215 CrossRefGoogle Scholar
  46. Nakayama J, Rice JC, Strahl BD, Allis CD, Grewal SI (2001) Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292:110–113.  https://doi.org/10.1126/science.1060118 CrossRefGoogle Scholar
  47. Niwa O, Matsumoto T, Yanagida M (1986) Construction of a mini-chromosome by deletion and its mitotic and meiotic behaviour in fission yeast. Mol Gen Genet 203:397–405.  https://doi.org/10.1007/BF00422063 CrossRefGoogle Scholar
  48. Okita AK, Zafar F, Su J, Weerasekara D, Kajitani T, Takahashi TS, Kimura H, Murakami Y, Masukata H, Nakagawa T (2019) Heterochromatin suppresses gross chromosomal rearrangements at centromeres by repressing Tfs1/TFIIS-dependent transcription. Commun Biol 2:17.  https://doi.org/10.1038/s42003-018-0251-z CrossRefGoogle Scholar
  49. Onaka AT, Toyofuku N, Inoue T, Okita AK, Sagawa M, Su J, Shitanda T, Matsuyama R, Zafar F, Takahashi TS, Masukata H, Nakagawa T (2016) Rad51 and Rad54 promote noncrossover recombination between centromere repeats on the same chromatid to prevent isochromosome formation. Nucleic Acids Res 44:10744–10757.  https://doi.org/10.1093/nar/gkw874 CrossRefGoogle Scholar
  50. Osman F, Dixon J, Doe CL, Whitby MC (2003) Generating crossovers by resolution of nicked Holliday junctions: a role for Mus81–Eme1 in meiosis. Mol Cell 12:761–774.  https://doi.org/10.1016/S1097-2765(03)00343-5 CrossRefGoogle Scholar
  51. Pardue ML, Gall JG (1970) Chromosomal localization of mouse satellite DNA. Science 168:1356–1358.  https://doi.org/10.1126/science.168.3937.1356 CrossRefGoogle Scholar
  52. Pebernard S, Schaffer L, Campbell D, Head SR, Boddy MN (2008) Localization of Smc5/6 to centromeres and telomeres requires heterochromatin and SUMO, respectively. EMBO J 27:3011–3023.  https://doi.org/10.1038/emboj.2008.220 CrossRefGoogle Scholar
  53. Peng JC, Karpen GH (2007) H3K9 methylation and RNA interference regulate nucleolar organization and repeated DNA stability. Nat Cell Biol 9:25–35.  https://doi.org/10.1038/ncb1514 CrossRefGoogle Scholar
  54. Peters AH, O'Carroll D, Scherthan H, Mechtler K, Sauer S, Schofer C, Weipoltshammer K, Pagani M, Lachner M, Kohlmaier A, Opravil S, Doyle M, Sibilia M, Jenuwein T (2001) Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107:323–337.  https://doi.org/10.1016/S0092-8674(01)00542-6 CrossRefGoogle Scholar
  55. Pimpinelli S, Berloco M, Fanti L, Dimitri P, Bonaccorsi S, Marchetti E, Caizzi R, Caggese C, Gatti M (1995) Transposable elements are stable structural components of Drosophila melanogaster heterochromatin. Proc Natl Acad Sci USA 92:3804–3808.  https://doi.org/10.1073/pnas.92.9.3804 CrossRefGoogle Scholar
  56. Plohl M, Mestrovic N, Mravinac B (2014) Centromere identity from the DNA point of view. Chromosoma 123:313–325.  https://doi.org/10.1007/s00412-014-0462-0 CrossRefGoogle Scholar
  57. Rea S, Eisenhaber F, O'Carroll D, Strahl BD, Sun ZW, Schmid M, Opravil S, Mechtler K, Ponting CP, Allis CD, Jenuwein T (2000) Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406:593–599.  https://doi.org/10.1038/35020506 CrossRefGoogle Scholar
  58. Robellet X, Vanoosthuyse V, Bernard P (2017) The loading of condensin in the context of chromatin. Curr Genet 63:577–589.  https://doi.org/10.1007/s00294-016-0669-0 CrossRefGoogle Scholar
  59. Rose NR, Klose RJ (2014) Understanding the relationship between DNA methylation and histone lysine methylation. Biochim Biophys Acta 1839:1362–1372.  https://doi.org/10.1016/j.bbagrm.2014.02.007 CrossRefGoogle Scholar
  60. Rosin LF, Mellone BG (2017) Centromeres drive a hard bargain. Trends Genet 33:101–117.  https://doi.org/10.1016/j.tig.2016.12.001 CrossRefGoogle Scholar
  61. Ryu T, Spatola B, Delabaere L, Bowlin K, Hopp H, Kunitake R, Karpen GH, Chiolo I (2015) Heterochromatic breaks move to the nuclear periphery to continue recombinational repair. Nat Cell Biol 17:1401–1411.  https://doi.org/10.1038/ncb3258 CrossRefGoogle Scholar
  62. Sadaie M, Iida T, Urano T, Nakayama J (2004) A chromodomain protein, Chp1, is required for the establishment of heterochromatin in fission yeast. EMBO J 23:3825–3835.  https://doi.org/10.1038/sj.emboj.7600401 CrossRefGoogle Scholar
  63. Sanchez AM, Shuman S, Schwer B (2018) RNA polymerase II CTD interactome with 3′ processing and termination factors in fission yeast and its impact on phosphate homeostasis. Proc Natl Acad Sci USA 115:E10652–E10661.  https://doi.org/10.1073/pnas.1810711115 CrossRefGoogle Scholar
  64. Selmecki A, Forche A, Berman J (2006) Aneuploidy and isochromosome formation in drug-resistant Candida albicans. Science 313:367–370.  https://doi.org/10.1126/science.1128242 CrossRefGoogle Scholar
  65. Shang WH, Hori T, Martins NM, Toyoda A, Misu S, Monma N, Hiratani I, Maeshima K, Ikeo K, Fujiyama A, Kimura H, Earnshaw WC, Fukagawa T (2013) Chromosome engineering allows the efficient isolation of vertebrate neocentromeres. Dev Cell 24:635–648.  https://doi.org/10.1016/j.devcel.2013.02.009 CrossRefGoogle Scholar
  66. Shukla M, Tong P, White SA, Singh PP, Reid AM, Catania S, Pidoux AL, Allshire RC (2018) Centromere DNA destabilizes H3 nucleosomes to promote CENP-A deposition during the cell cycle. Curr Biol 28:3924–3936.  https://doi.org/10.1016/j.cub.2018.10.049 CrossRefGoogle Scholar
  67. Somesh BP, Reid J, Liu WF, Sogaard TM, Erdjument-Bromage H, Tempst P, Svejstrup JQ (2005) Multiple mechanisms confining RNA polymerase II ubiquitylation to polymerases undergoing transcriptional arrest. Cell 121:913–923.  https://doi.org/10.1016/j.cell.2005.04.010 CrossRefGoogle Scholar
  68. Song J, Li X, Sun L, Xu S, Liu N, Yao Y, Liu Z, Wang W, Rong H, Wang B (2016) A family with Robertsonian translocation: a potential mechanism of speciation in humans. Mol Cytogenet 9:48.  https://doi.org/10.1186/s13039-016-0255-7 CrossRefGoogle Scholar
  69. Sun X, Le HD, Wahlstrom JM, Karpen GH (2003) Sequence analysis of a functional Drosophila centromere. Genome Res 13:182–194.  https://doi.org/10.1101/gr.681703 CrossRefGoogle Scholar
  70. Takahashi K, Murakami S, Chikashige Y, Funabiki H, Niwa O, Yanagida M (1992) A low copy number central sequence with strict symmetry and unusual chromatin structure in fission yeast centromere. Mol Biol Cell 3:819–835.  https://doi.org/10.1091/mbc.3.7.819 CrossRefGoogle Scholar
  71. Therman E, Susman B, Denniston C (1989) The nonrandom participation of human acrocentric chromosomes in Robertsonian translocations. Ann Hum Genet 53:49–65.  https://doi.org/10.1111/j.1469-1809.1989.tb01121.x CrossRefGoogle Scholar
  72. Tiepolo L, Maraschio P, Gimelli G, Cuoco C, Gargani GF, Romano C (1979) Multibranched chromosomes 1, 9, and 16 in a patient with combined IgA and IgE deficiency. Hum Genet 51:127–137.  https://doi.org/10.1007/BF00287166 CrossRefGoogle Scholar
  73. Ting DT, Lipson D, Paul S, Brannigan BW, Akhavanfard S, Coffman EJ, Contino G, Deshpande V, Iafrate AJ, Letovsky S, Rivera MN, Bardeesy N, Maheswaran S, Haber DA (2011) Aberrant overexpression of satellite repeats in pancreatic and other epithelial cancers. Science 331:593–596.  https://doi.org/10.1126/science.1200801 CrossRefGoogle Scholar
  74. Tinline-Purvis H, Savory AP, Cullen JK, Dave A, Moss J, Bridge WL, Marguerat S, Bahler J, Ragoussis J, Mott R, Walker CA, Humphrey TC (2009) Failed gene conversion leads to extensive end processing and chromosomal rearrangements in fission yeast. EMBO J 28:3400–3412.  https://doi.org/10.1038/emboj.2009.265 CrossRefGoogle Scholar
  75. Tsouroula K, Furst A, Rogier M, Heyer V, Maglott-Roth A, Ferrand A, Reina-San-Martin B, Soutoglou E (2016) Temporal and spatial uncoupling of DNA double strand break repair pathways within mammalian heterochromatin. Mol Cell 63:293–305.  https://doi.org/10.1016/j.molcel.2016.06.002 CrossRefGoogle Scholar
  76. Villa-Hernandez S, Bermejo R (2018) Cohesin dynamic association to chromatin and interfacing with replication forks in genome integrity maintenance. Curr Genet 64:1005–1013.  https://doi.org/10.1007/s00294-018-0824-x CrossRefGoogle Scholar
  77. Zafar F, Okita AK, Onaka AT, Su J, Katahira Y, Nakayama JI, Takahashi TS, Masukata H, Nakagawa T (2017) Regulation of mitotic recombination between DNA repeats in centromeres. Nucleic Acids Res 45:11222–11235.  https://doi.org/10.1093/nar/gkx763 CrossRefGoogle Scholar
  78. Zaratiegui M, Castel SE, Irvine DV, Kloc A, Ren J, Li F, de Castro E, Marin L, Chang AY, Goto D, Cande WZ, Antequera F, Arcangioli B, Martienssen RA (2011) RNAi promotes heterochromatic silencing through replication-coupled release of RNA Pol II. Nature 479:135–138.  https://doi.org/10.1038/nature10501 CrossRefGoogle Scholar
  79. Zeller P, Padeken J, van Schendel R, Kalck V, Tijsterman M, Gasser SM (2016) Histone H3K9 methylation is dispensable for Caenorhabditis elegans development but suppresses RNA:DNA hybrid-associated repeat instability. Nat Genet 48:1385–1395.  https://doi.org/10.1038/ng.3672 CrossRefGoogle Scholar
  80. Zhu Q, Pao GM, Huynh AM, Suh H, Tonnu N, Nederlof PM, Gage FH, Verma IM (2011) BRCA1 tumour suppression occurs via heterochromatin-mediated silencing. Nature 477:179–184.  https://doi.org/10.1038/nature10371 CrossRefGoogle Scholar
  81. Zhu Q, Hoong N, Aslanian A, Hara T, Benner C, Heinz S, Miga KH, Ke E, Verma S, Soroczynski J, Yates JR 3rd, Hunter T, Verma IM (2018) Heterochromatin-encoded satellite RNAs induce breast cancer. Mol Cell 70:842–853.  https://doi.org/10.1016/j.molcel.2018.04.023 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biological Sciences, Graduate School of ScienceOsaka UniversityToyonakaJapan

Personalised recommendations