Advertisement

Regulation of centromeric heterochromatin in the cell cycle by phosphorylation of histone H3 tyrosine 41

  • Bingbing Ren
  • Ee Sin ChenEmail author
Review
  • 106 Downloads

Abstract

Constitutive heterochromatin packages long stretches of repetitive DNA sequences at the centromere and telomere, and ensures genomic integrity at these loci by preventing aberrant recombination and transcription. The chromatin scaffold of heterochromatin is dynamically regulated in the cell cycle, and inheritance of the epigenetically silenced state is dependent on a transcriptional event imposed on the underlying non-coding RNA in conjunction with the DNA replicative phase. Heterochromatin becomes transiently loosened in response to a reduction in the binding of Swi6, a heterochromatin protein, and this allows RNA polymerase II access to the underlying sequence. The derived transcripts, in turn, drive heterochromatin formation via the recruitment of other silencing factors. It remains unclear how heterochromatin becomes decompacted in a cell cycle-specific manner. Here, we describe a mechanism of heterochromatin decompaction initiated by a novel histone modification, histone H3 tyrosine 41 phosphorylation (H3Y41p). We will discuss how H3Y41p cooperates with other regulatory pathways to enforce cell cycle-dependent regulation of constitutive heterochromatin.

Keywords

H3Y41 phosphorylation Heterochromatin Chromodomain Fission yeast Cell cycle Centromere Non-coding RNA 

Notes

Acknowledgements

We thank members of the Chen Lab for discussion; Rebecca Jackson and Hugh P. Cam for editing the manuscript. This work was supported by a Singapore Ministry of Education Tier 1 Grant (R-183-000-389-112).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Allshire RC, Ekwall K (2015) Epigenetic regulation of chromatin states in Schizosaccharomyces pombe. Cold Spring Harb Perspect Biol 7:a018770.  https://doi.org/10.1101/cshperspect.a018770 CrossRefGoogle Scholar
  2. Bannister AJ, Zegerman P, Partridge JF, Miska EA, Thomas JO, Allshire RC, Kouzarides T (2001) Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410:120–124CrossRefGoogle Scholar
  3. Bayne EH, Portoso M, Kagansky A, Kos-Braun IC, Urano T, Ekwall K, Alves F, Rappsilber J, Allshire RC (2008) Splicing factors facilitate RNAi-directed silencing in fission yeast. Science 322:602–606.  https://doi.org/10.1126/science.1164029 CrossRefGoogle Scholar
  4. Bjerling P, Ekwall K (2002) Centromere domain organization and histone modifications. Braz J Med Biol Res 35:499–507CrossRefGoogle Scholar
  5. Cam HP, Sugiyama T, Chen ES, Chen X, FitzGerald PC, Grewal SI (2005) Comprehensive analysis of heterochromatin- and RNAi-mediated epigenetic control of the fission yeast genome. Nat Genet 37:809–819CrossRefGoogle Scholar
  6. Cam HP, Chen ES, Grewal SI (2009) Transcriptional scaffolds for heterochromatin assembly. Cell 136:610–614.  https://doi.org/10.1016/j.cell.2009.02.004 CrossRefGoogle Scholar
  7. Canzio D et al (2013) A conformational switch in HP1 releases auto-inhibition to drive heterochromatin assembly. Nature 496:377–381.  https://doi.org/10.1038/nature12032 CrossRefGoogle Scholar
  8. Chen ES (2018) Targeting epigenetics using synthetic lethality in precision medicine. Cell Mol Life Sci 75:3381–3392.  https://doi.org/10.1007/s00018-018-2866-0 CrossRefGoogle Scholar
  9. Chen ES, Zhang K, Nicolas E, Cam HP, Zofall M, Grewal SI (2008) Cell cycle control of centromeric repeat transcription and heterochromatin assembly. Nature 451:734–737.  https://doi.org/10.1038/nature06561 CrossRefGoogle Scholar
  10. Ci X et al (2018) Heterochromatin protein 1α mediates development and aggressiveness of neuroendocrine prostate cancer. Cancer Res 78:2691–2704.  https://doi.org/10.1158/0008-5472.CAN-17-3677 CrossRefGoogle Scholar
  11. D’Urso A, Brickner JH (2017) Epigenetic transcriptional memory. Curr Genet 63:435–439.  https://doi.org/10.1007/s00294-016-0661-8 CrossRefGoogle Scholar
  12. Dawson MA, Bannister AJ, Göttgens B, Foster SD, Bartke T, Green AR, Kouzarides T (2009) JAK2 phosphorylates histone H3Y41 and excludes HP1alpha from chromatin. Nature 461:819–822.  https://doi.org/10.1038/nature08448 CrossRefGoogle Scholar
  13. Debeauchamp JL, Moses A, Noffsinger VJ, Ulrich DL, Job G, Kosinski AM, Partridge JF (2008) Chp1-Tas3 interaction is required to recruit RITS to fission yeast centromeres and for maintenance of centromeric heterochromatin. Mol Cell Biol 28:2154–2166.  https://doi.org/10.1128/MCB.01637-07 CrossRefGoogle Scholar
  14. Deng X, Zhou H, Zheng G, Wang W, Mao L, Zhou X, Yu Y, Lu H (2015) Sgf73, a subunit of SAGA complex, is required for the assembly of RITS complex in fission yeast. Sci Rep 5:14707.  https://doi.org/10.1038/srep14707 CrossRefGoogle Scholar
  15. Djupedal I, Portoso M, Spåhr H, Bonilla C, Gustafsson CM, Allshire RC, Ekwall K (2005) RNA Pol II subunit Rpb7 promotes centromeric transcription and RNAi-directed chromatin silencing. Genes Dev 19:2301–2306CrossRefGoogle Scholar
  16. Ekwall K, Nimmo ER, Javerzat JP, Borgstrøm B, Egel R, Cranston G, Allshire R (1996) Mutations in the fission yeast silencing factors clr4+ and rik1+ disrupt the localisation of the chromo domain protein Swi6p and impair centromere function. J Cell Sci 109:2637–2648Google Scholar
  17. Enukashvily NI, Malashicheva AB, Waisertreiger IS (2009) Satellite DNA spatial localization and transcriptional activity in mouse embryonic E-14 and IOUD2 stem cells. Cytogenet Genome Res 124:277–287.  https://doi.org/10.1159/000218132 CrossRefGoogle Scholar
  18. Eymery A et al (2009) A transcriptomic analysis of human centromeric and pericentric sequences in normal and tumor cells. Nucleic Acids Res 37:6340–6354.  https://doi.org/10.1093/nar/gkp639 CrossRefGoogle Scholar
  19. Fischle W, Tseng BS, Dormann HL, Ueberheide BM, Garcia BA, Shabanowitz J, Hunt DF, Funabiki H, Allis CD (2005) Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation. Nature 438:1116–1122CrossRefGoogle Scholar
  20. Grewal SI, Jia S (2007) Heterochromatin revisited. Nat Rev Genet 8:35–46CrossRefGoogle Scholar
  21. Hale CJ, Potok ME, Lopez J, Do T, Liu A, Gallego-Bartolome J, Michaels SD, Jacobsen SE (2016) Identification of multiple proteins coupling transcriptional genes silencing to genome stability in Arabidopsis thaliana. PLoS Genet 12:e1006092.  https://doi.org/10.1371/journal.pgen.1006092 CrossRefGoogle Scholar
  22. Hall LL, Byron M, Carone DM, Whitfield TW, Pouliot GP, Fischer A, Jones P, Lawrence JB (2017) Demethylated HSATII DNA and HSATII RNA foci sequester PRC1 and MeCP2 into cancer-specific nuclear bodies. Cell Rep 18:2943–2956.  https://doi.org/10.1016/j.celrep.2017.02.072 CrossRefGoogle Scholar
  23. Hirota T, Lipp JJ, Toh BH, Peters JM (2005) Histone H3 serine 10 phosphorylation by Aurora B causes HP1 dissociation from heterochromatin. Nature 438:1176–1180CrossRefGoogle Scholar
  24. Issac RS, Sanulli S, Tibble R, Hornsby M, Ravalin M, Craik CS, Gross JD, Narlikar GJ (2017) Biochemical basis for distinct roles of the heterochromatin proteins Swi6 and Chp2. J Mol Biol 429:3666–3677.  https://doi.org/10.1016/j.jmb.2017.09.012 CrossRefGoogle Scholar
  25. Jackson RA, Chen ES (2016) Synthetic lethal approaches for assessing combinatorial efficacy of chemotherapeutic drugs. Pharmacol Ther 162:69–85.  https://doi.org/10.1016/pharmthera.2016.01.014 CrossRefGoogle Scholar
  26. Jih G, Iglesias N, Currie MA, Bhanu NV, Paulo JA, Gygi SP, Garcia BA, Moazed D (2017) Unique roles for histone H3K9me states in RNAi and heritable silencing of transcription. Nature 547:463–467.  https://doi.org/10.1038/nature23267 CrossRefGoogle Scholar
  27. Johansen KM, Johansen J (2006) Regulation of chromatin structure by histone H3S10 phosphorylation. Chromosome Res 14:393–404.  https://doi.org/10.1007/s10577-006-1063-4 CrossRefGoogle Scholar
  28. Kato H, Goto DB, Martienssen RA, Urano T, Furukawa K, Murakami Y (2005) RNA polymerase II is required for RNAi-dependent heterochromatin assembly. Science 309:467–469CrossRefGoogle Scholar
  29. Kitano E, Hayashi A, Kanai D, Shinmyozu K, Nakayama JI (2011) Roles of fission yeast Grc3 protein in ribosomal RNA processing and heterochromatic gene silencing. J Biol Chem 286:15391–15402.  https://doi.org/10.1074/jbc.M110.201343 CrossRefGoogle Scholar
  30. Kloc A, Zaratiegui M, Nora E, Martienssen R (2008) RNA interference guides histone modification during the S phase of chromosomal replication. Curr Biol 18:490–495.  https://doi.org/10.1016/j.cub.2008.03.016 CrossRefGoogle Scholar
  31. Larson AG, Elnatan D, Keenen MM, Tmka MJ, Johnston JB, Burlingame AL, Agard DA, Redding S, Narlikar GJ (2017) Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin. Nature 547:236–240.  https://doi.org/10.1038/nature22822 CrossRefGoogle Scholar
  32. Li F, Martienssen R, Cande WZ (2011) Coordination of DNA replication and histone modification by the Rik1-Dos2 complex. Nature 475:244–248.  https://doi.org/10.1038/nature10161 CrossRefGoogle Scholar
  33. Li PC, Petreaca RC, Jensen A, Yuan JP, Green MD, Forsburg SL (2013) Replication fork stability is essential for the maintenance of centromere integrity in the absence of heterochromatin. Cell Rep 3:638–645.  https://doi.org/10.1016/j.celrep.2013.02.007 CrossRefGoogle Scholar
  34. Lomberk G, Wallrath L, Urrutia R (2006) The heterochromatin protein 1 family. Genome Biol 7:228.  https://doi.org/10.1186/gb-2006-7-7-228 CrossRefGoogle Scholar
  35. Lu J, Gilbert DM (2007) Proliferation-dependent and cell cycle regulated transcription of mouse pericentric heterochromatin. J Cell Biol 179:411–421CrossRefGoogle Scholar
  36. Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389:251–260CrossRefGoogle Scholar
  37. Maison C et al (2011) SUMOylation promotes de novo targeting of HP1α to pericentric heterochromatin. Nat Genet 43:220–227.  https://doi.org/10.1038/ng.765 CrossRefGoogle Scholar
  38. Mallm JP, Rippe K (2015) Aurora kinase B regulates telomerase activity via a centromeric RNA in stem cells. Cell Rep 11:1667–1678.  https://doi.org/10.1016/j.celrep.2015.05.015 CrossRefGoogle Scholar
  39. Meschini R, Morucci E, Bemi A, Lopez-Martinez W, Palitti F (2015) Role of chromatin structure modulation by the histone deacetylase inhibitor trichostatin A on the radio-sensitivity of ataxia telangiectasia. Mutat Res 777:52–59.  https://doi.org/10.1016/j.mrfmmm.2015.04.009 CrossRefGoogle Scholar
  40. Motamedi MR, Verdel A, Colmenares SU, Gerber SA, Gygi SP, Moazed D (2004) Two RNAi complexes, RITS and RDRC, physically interact and localize to noncoding centromeric RNAs. Cell 119:789–802.  https://doi.org/10.1016/j.cell.2004.11.034 CrossRefGoogle Scholar
  41. Motamedi MR, Hong EJ, Li X, Gerber S, Denison C, Gygi S, Moazed D (2008) HP1 proteins form distinct complexes and mediate heterochromatic gene silencing by nonoverlapping mechanisms. Mol Cell 32:778–790.  https://doi.org/10.1016/j.molcel.2008.10.026 CrossRefGoogle Scholar
  42. Nakayama JI, Rice JC, Strahl BD, Allis CD, Grewal SI (2001) Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292:110–113CrossRefGoogle Scholar
  43. Neumann P, Yan H, Jiang J (2007) The centromeric retrotransposons of rice are transcribed and differentially processed by RNA interference. Genetics 176:749–761.  https://doi.org/10.1534/genetics.107.071902 CrossRefGoogle Scholar
  44. Nguyen TT, Lim JS, Tang RM, Zhang L, Chen ES (2015) Fitness profiling links topoisomerase II regulation of centromeric integrity to doxorubicin resistance in fission yeast. Sci Rep 5:8400.  https://doi.org/10.1038/srep08400 CrossRefGoogle Scholar
  45. Nguyen TT et al (2016) Predicting chemotherapeutic drug combinations through gene network profiling. Sci Rep 6:18658.  https://doi.org/10.1038/srep18658 CrossRefGoogle Scholar
  46. Nicolas E, Yamada T, Cam HP, Fitzgerald PC, Kobayashi R, Grewal SI (2007) Distinct roles of HDAC complexes in promoter silencing, antisense suppression and DNA damage protection. Nat Struct Mol Biol 14:372–380CrossRefGoogle Scholar
  47. Noma K, Sugiyama T, Cam H, Verdel A, Zofall M, Jia S, Moazed D, Grewal SI (2004) RITS acts in cis to promote RNA interference-mediated transcriptional and post-transcriptional silencing. Nat Genet 36:1174–1180CrossRefGoogle Scholar
  48. Probst AV, Okamoto I, Casanova M, El Marjou F, Le Baccon P, Almouzni G (2010) A strand-specific burst in transcription of pericentric satellites is required for chromocenter formation in early mouse development. Dev Cell 19:625–638.  https://doi.org/10.1016/j.devcel.2010.09.002 CrossRefGoogle Scholar
  49. Reddy BD, Wang Y, Niu L, Higuchi RC, Marguerat SB, Bähler J, Smith GR, Jia S (2011) Elimination of a specific histone H3K14 acetyltransferase complex bypasses the RNAi pathway to regulate pericentric heterochromatin functions. Genes Dev 25:214–219.  https://doi.org/10.1101/gad.1993611 CrossRefGoogle Scholar
  50. Ren B, Tan HL, Nguyen TTT, Sayed AMM, Li Y, Mok YK, Yang H, Chen ES (2018) Regulation of transcriptional silencing and chromodomain protein localization at centromeric heterochromatin by histone H3 tyrosine 41 phosphorylation in fission yeast. Nucleic Acids Res 46:189–202.  https://doi.org/10.1093/nar/gkx1010 CrossRefGoogle Scholar
  51. Robellet X, Vanoosthuyse V, Bernard P (2017) The loading of condensin in the context of chromatin. Curr Genet 63:577–589.  https://doi.org/10.1007/s00294-016-0669-0 CrossRefGoogle Scholar
  52. Sadaie M, Iida T, Urano T, Nakayama J (2004) A chromodomain protein, Chp1, is required for the establishment of heterochromatin in fission yeast. EMBO J 23:3825–3835.  https://doi.org/10.1038/sj.emboj.7600401 CrossRefGoogle Scholar
  53. Sadaie M, Kawaguchi R, Ohtani Y, Arisaka F, Tanaka K, Shirahige K, Nakayama J (2008) Balance between distinct HP1 family proteins controls heterochromatin assembly in fission yeast. Mol Cell Biol 28:6973–6988CrossRefGoogle Scholar
  54. Salzberg AC, Harris-Becker A, Popova EY, Keasey N, Loughran TP, Claxton DF, Grigoryev SA (2017) Genome-wide mapping of histone H3K9me2 in acute myeloid leukemia reveals large chromosomal domains associated with massive gene silencing and sites of genome instability. PLoS One 12:e0173723.  https://doi.org/10.1371/journal.pone.0173723 CrossRefGoogle Scholar
  55. Seo HD, Kwon CS, Lee D (2018) The 19S proteasome regulates subtelomere silencing and facultative heterochromatin formation in fission yeast. Curr Genet 64:741–752.  https://doi.org/10.1007/s00294-017-0792-6 CrossRefGoogle Scholar
  56. Shilatifard A (2006) Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annu Rev Biochem 75:243–269CrossRefGoogle Scholar
  57. Simon JA, Kingston RE (2009) Mechanisms of polycomb gene silencing: knowns and unknowns. Nat Rev Mol Cell Biol 10:697–708.  https://doi.org/10.1038/nrm2763 CrossRefGoogle Scholar
  58. Sugiyama T, Cam H, Verdel A, Moazed D, Grewal SI (2005) RNA-dependent RNA polymerase is an essential component of a self-enforcing loop coupling heterochromatin assembly to siRNA production. Proc Natl Acad Sci USA 102:152–157CrossRefGoogle Scholar
  59. Sugiyama T, Cam HP, Sugiyama R, Noma K, Zofall M, Kobayashi R, Grewal SI (2007) SHREC, an effector complex for heterochromatic transcriptional silencing. Cell 128:491–504.  https://doi.org/10.1016/j.cell.2006.12.035 CrossRefGoogle Scholar
  60. Suzuki S, Kato H, Suzuki Y, Chikashige Y, Hiraoka Y, Kimura H, Nagao K, Obuse C, Takahata S, Murakami Y (2016) Histone H3K36 trimethylation is essential for multiple silencing mechanisms in fission yeast. Nucleic Acids Res 44:4147–4162.  https://doi.org/10.1093/nar/gkw008 CrossRefGoogle Scholar
  61. Thon G, Verhein-Hansen J (2000) Four chromo-domain proteins of Schizosaccharomyces pombe differentially repress transcription at various chromosomal locations. Genetics 155:551–568Google Scholar
  62. Ting DT et al (2011) Aberrant overexpression of satellite repeats in pancreatic and other epithelial cancers. Science 331:593–596.  https://doi.org/10.1126/science.1200801 CrossRefGoogle Scholar
  63. Trojer P, Reinberg D (2007) Facultative heterochromatin: is there a distinctive molecular signature? Mol Cell 28:1–13CrossRefGoogle Scholar
  64. Verdel A, Jia S, Gerber S, Sugiyama T, Gygi S, Grewal SI, Moazed D (2004) RNAi-mediated targeting of heterochromatin by the RITS complex. Science 303:672–676CrossRefGoogle Scholar
  65. Verdel A, Moazed D (2005) RNAi-directed assembly of heterochromatin in fission yeast. FEBS Lett 579:5872–5878.  https://doi.org/10.1016/j.febslet.2005.08.083 CrossRefGoogle Scholar
  66. Xhemalce B, Kouzarides T (2010) A chromodomain switch mediated by histone H3 lys 4 acetylation regulates heterochromatin assembly. Genes Dev 24:647–652.  https://doi.org/10.1101/gad.1881710 CrossRefGoogle Scholar
  67. Yang J, Li F (2017) Are all repeats created equal? Understanding DNA repeats at an individual level. Curr Genet 63:57–63.  https://doi.org/10.1007/s00294-016-0619-x CrossRefGoogle Scholar
  68. Yu R, Wang X, Moazed D (2018) Epigenetic inheritance mediated by coupling of RNAi and histone H3K9 methylation. Nature 558:615–619.  https://doi.org/10.1038/s41586-018-0239-3 CrossRefGoogle Scholar
  69. Zhang K, Mosch K, Fischle W, Grewal SI (2008) Roles of the Clr4 methyltransferase complex in nucleation, spreading and maintenance of heterochromatin. Nat Struct Mol Biol 15:381–388.  https://doi.org/10.1038/nsmb.1406 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of BiochemistryNational University of Singapore, Yong Loo Lin School of MedicineSingaporeSingapore
  2. 2.National University Health System (NUHS)SingaporeSingapore
  3. 3.NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences InstituteNational University of SingaporeSingaporeSingapore
  4. 4.NUS Graduate School for Integrative Sciences and EngineeringNational University of SingaporeSingaporeSingapore
  5. 5.Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life SciencesUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations