Advertisement

Role of Mediator in virulence and antifungal drug resistance in pathogenic fungi

  • Gary P. Moran
  • Matthew Z. Anderson
  • Lawrence C. Myers
  • Derek J. Sullivan
Review
  • 26 Downloads

Abstract

Mediator complex has recently emerged as an important regulator of gene expression in pathogenic fungi. Mediator is a multi-subunit complex of polypeptides involved in transcriptional activation in eukaryotes, with roles including preinitiation complex (PIC) assembly and chromatin remodeling. Within the last decade, Mediator has been shown to play an integral role in regulating virulence gene expression and drug resistance in human fungal pathogens. In some fungi, specific Mediator subunits have been shown to be required for virulence. In Candida species, duplication and expansion of Mediator subunit encoding genes has occurred on at least three occasions (CgMED15 in C. glabrata and MED2/TLO in C. albicans and C. dubliniensis) suggesting important roles for Mediator in the evolution of these pathogens. This review summarises recent developments in our understanding of Mediator in fungal pathogens and the potential for the development of therapeutic drugs to target Mediator functions.

Keywords

Fungi Pathogenicity Antifungals Resistance Mediator Transcription 

Notes

Acknowledgements

G.P.M and D.J.S. would like to thank the Dublin Dental University Hospital and Trinity College Dublin for support. LCM would like to thank the National Institutes for Health AI115253 AI113390 for funding the research associated with this review. M.Z.A. received support from The Ohio State University.

Supplementary material

294_2019_932_MOESM1_ESM.docx (20 kb)
Supplementary material 1 (DOCX 19 KB)

References

  1. Allen BL, Taatjes DJ (2015) The mediator complex: a central integrator of transcription. Nat Rev Mol Cell Biol 16:155–166.  https://doi.org/10.1038/nrm3951 CrossRefGoogle Scholar
  2. Anderson MZ, Baller JA, Dulmage K, Wigen L, Berman J (2012) The three clades of the telomere-associated TLO gene family of Candida albicans have different splicing, localization, and expression features. Eukaryot Cell 11:1268–1275.  https://doi.org/10.1128/EC.00230-12 CrossRefGoogle Scholar
  3. Anderson MZ, Wigen LJ, Burrack LS, Berman J (2015) Real-time evolution of a subtelomeric gene family in Candida albicans. Genetics 200:907–919.  https://doi.org/10.1534/genetics.115.177451 CrossRefGoogle Scholar
  4. Ansari SA, Ganapathi M, Benschop JJ, Holstege FCP, Wade JT, Morse RH (2011) Distinct role of Mediator tail module in regulation of SAGA-dependent, TATA-containing genes in yeast. EMBO J 31:44–57.  https://doi.org/10.1038/emboj.2011.362 CrossRefGoogle Scholar
  5. Banerjee M, Thompson DS, Lazzell A, Carlisle PL, Pierce C, Monteagudo C, Lopez-Ribot JL, Kadosh D (2008) UME6, a novel filament-specific regulator of Candida albicans hyphal extension and virulence. Mol Biol Cell 19:1354–1365.  https://doi.org/10.1091/mbc.e07-11-1110 CrossRefGoogle Scholar
  6. Borah S, Shivarathri R, Srivastava VK, Ferrari S, Sanglard D, Kaur R (2014) Pivotal role for a tail subunit of the RNA polymerase II Mediator complex CgMed2 in azole tolerance and adherence in Candida glabrata. Antimicrob Agents Chemother 58:5976–5986.  https://doi.org/10.1128/AAC.02786-14 CrossRefGoogle Scholar
  7. Brown CA, Murray AW, Verstrepen KJ (2010) Rapid expansion and functional divergence of subtelomeric gene families in yeasts. Curr Biol 20:895–903.  https://doi.org/10.1016/j.cub.2010.04.027 CrossRefGoogle Scholar
  8. Butler G, Rasmussen MD, Lin MF, Santos MAS, Sakthikumar S, Munro CA, Rheinbay E, Grabherr M, Forche A, Reedy JL, Agrafioti I, Arnaud MB, Bates S, Brown AJP, Brunke S, Costanzo MC, Fitzpatrick DA, de Groot PWJ, Harris D, Hoyer LL, Hube B, Klis FM, Kodira C, Lennard N, Logue ME, Martin R, Neiman AM, Nikolaou E, Quail MA, Quinn J, Santos MC, Schmitzberger FF, Sherlock G, Shah P, Silverstein KAT, Skrzypek MS, Soll D, Staggs R, Stansfield I, Stumpf MPH, Sudbery PE, Srikantha T, Zeng Q, Berman J, Berriman M, Heitman J, Gow NAR, Lorenz MC, Birren BW, Kellis M, Cuomo CA (2009) Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature 459:657–662.  https://doi.org/10.1038/nature08064 CrossRefGoogle Scholar
  9. Cai G, Imasaki T, Yamada K, Cardelli F, Takagi Y, Asturias FJ (2010) Mediator head module structure and functional interactions. Nat Struct Mol Biol 17:273–279.  https://doi.org/10.1038/nsmb.1757 CrossRefGoogle Scholar
  10. Carreto L, Eiriz MF, Gomes AC, Pereira PM, Schuller D, Santos MA (2008) Comparative genomics of wild type yeast strains unveils important genome diversity. BMC Genom 9:517–524.  https://doi.org/10.1186/1471-2164-9-524 CrossRefGoogle Scholar
  11. Conaway RC, Conaway JW (2011) Origins and activity of the Mediator complex. Sem Cell Dev Biol 22:729–734.  https://doi.org/10.1016/j.semcdb.2011.07.021 CrossRefGoogle Scholar
  12. Cowen LE, Sanglard D, Howard SJ, Rogers PD, Perlin DS (2014) Mechanisms of antifungal drug resistance. Cold Spring Harb Perspect Med 5:a019752.  https://doi.org/10.1101/cshperspect.a019752 CrossRefGoogle Scholar
  13. D’Urso A, Brickner JH (2017) Epigenetic transcriptional memory. Curr Genet 63:435.  https://doi.org/10.1007/s00294-016-0661-8 CrossRefGoogle Scholar
  14. Dunn MJ, Kinney GM, Washington PM, Berman J, Anderson MZ (2018) Functional diversification accompanies gene family expansion of MED2 homologs in Candida albicans. PLoS Genet 14:e1007326.  https://doi.org/10.1371/journal.pgen.1007326 CrossRefGoogle Scholar
  15. Esnault C, Ghavi-Helm Y, Brun S, Soutourina J, Van Berkum N, Boschiero C, Holstege F, Werner M (2008) Mediator-dependent recruitment of TFIIH modules in preinitiation complex. Mol Cell 31:337–346.  https://doi.org/10.1016/j.molcel.2008.06.021 CrossRefGoogle Scholar
  16. Flanagan PR, Fletcher J, Boyle H, Sulea R, Moran GP, Sullivan DJ (2018) Expansion of the TLO gene family enhances the virulence of Candida species. PLoS One 13:e0200852.  https://doi.org/10.1371/journal.pone.0200852 CrossRefGoogle Scholar
  17. Freire-Benéitez V, Gourlay S, Berman J, Buscaino A (2016) Sir2 regulates stability of repetitive domains differentially in the human fungal pathogen Candida albicans. Nucleic Acids Res 44:9166–9179.  https://doi.org/10.1093/nar/gkw594 Google Scholar
  18. Fukasawa R, Tsutsui T, Hirose Y, Tanaka A, Ohkuma Y (2012) Mediator CDK subunits are platforms for interactions with various chromatin regulatory complexes. J Biochem 152:241–249.  https://doi.org/10.1093/jb/mvs065 CrossRefGoogle Scholar
  19. Gao C, Wang L, Milgrom E, Shen WCW (2004) On the mechanism of constitutive Pdr1 activator-mediated PDR5 Transcription in Saccharomyces cerevisiae. J Biol Chem 279:42677–42686.  https://doi.org/10.1074/jbc.M406363200 CrossRefGoogle Scholar
  20. Gill G, Ptashne M (1988) Negative effect of the transcriptional activator GAL4. Nature 334:721–724.  https://doi.org/10.1038/334721a0 CrossRefGoogle Scholar
  21. Glazier VE, Krysan DJ (2018) Transcription factor network efficiency in the regulation of Candida albicans biofilms: it is a small world. Curr Genet 64:883.  https://doi.org/10.1007/s00294-018-0804-1 CrossRefGoogle Scholar
  22. Haran J, Boyle H, Hokamp K, Yeomans T, Liu Z, Church M, Fleming AB, Anderson MZ, Berman J, Myers LC, Sullivan DJ, Moran GP (2014) Telomeric ORFs (TLOs) in Candida spp. encode mediator subunits that regulate distinct virulence traits. PLoS Genet 10:e1004658.  https://doi.org/10.1371/journal.pgen.1004658 CrossRefGoogle Scholar
  23. Hernday AD, Lohse MB, Fordyce PM, Nobile CJ, De Risi JL, Johnson AD (2013) Structure of the transcriptional network controlling white-opaque switching in Candida albicans. Mol Microbiol 90:22–35.  https://doi.org/10.1111/mmi.12329 Google Scholar
  24. Hirakawa MP, Martinez DA, Sakthikumar S, Anderson MZ, Berlin A, Gujja S, Zeng Q, Zisson E, Wang JM, Greenberg JM, Berman J, Bennett RJ, Cuomo CA (2015) Genetic and phenotypic intra-species variation in Candida albicans. Genome Res 25:413–425.  https://doi.org/10.1101/gr.174623.114 CrossRefGoogle Scholar
  25. Homann OR, Dea J, Noble SM, Johnson AD (2009) A phenotypic profile of the Candida albicans regulatory network. PLoS Genet 5:e1000783.  https://doi.org/10.1371/journal.pgen.1000783 CrossRefGoogle Scholar
  26. Jackson AP, Gamble JA, Yeomans T, Moran GP, Saunders D, Harris D, Aslett M, Barrell JF, Butler G, Citiulo F, Coleman DC, de Groot PWJ, Goodwin TJ, Quail MA, McQuillan J, Munro CA, Pain A, Poulter RT, Rajandream MA, Renauld H, Spiering MJ, Tivey A, Gow NAR, Barrell B, Sullivan DJ, Berriman M (2009) Comparative genomics of the fungal pathogens Candida dubliniensis and Candida albicans. Genome Res 19:2231–2244.  https://doi.org/10.1101/gr.097501.109 CrossRefGoogle Scholar
  27. Jeronimo C, Robert F (2017) The mediator complex: at the nexus of RNA polymerase II transcription. Trends Cell Biol.  https://doi.org/10.1016/j.tcb.2017.07.001 Google Scholar
  28. Jeronimo C, Langelier M-F, Bataille AR, Pascal JM, Pugh BF, Robert F (2016) Tail and kinase modules differently regulate core mediator recruitment and function in vivo. Mol Cell 64:455–466.  https://doi.org/10.1016/j.molcel.2016.09.002 CrossRefGoogle Scholar
  29. Jung K-W, Yang D-H, Maeng S, Lee K-T, So Y-S, Hong J, Choi J, Byun H-J, Kim H, Bang S, Song M-H, Lee J-W, Kim MS, Kim S-Y, Ji J-H, Park G, Kwon H, Cha S, Meyers GL, Wang LL, Jang J, Janbon G, Adedoyin G, Kim T, Averette AK, Heitman J, Cheong E, Lee Y-H, Lee Y-W, Bahn Y-S (2015) Systematic functional profiling of transcription factor networks in Cryptococcus neoformans. Nat Comm 6:6757.  https://doi.org/10.1038/ncomms7757 CrossRefGoogle Scholar
  30. Kaur R, Castano I, Cormack BP (2004) Functional genomic analysis of fluconazole susceptibility in the pathogenic yeast Candida glabrata: roles of calcium signaling and mitochondria. Antimicrob Agents Chemother 48:1600–1613.  https://doi.org/10.1128/AAC.48.5.1600-1613.2004 CrossRefGoogle Scholar
  31. Lin X, Qi Y, Yan D, Liu H, Chen X, Liu L (2017) CgMED3 changes membrane sterol composition To help Candida glabrata tolerate low-pH stress. Appl Environ Microbiol 83:1.  https://doi.org/10.1128/AEM.00972-17 CrossRefGoogle Scholar
  32. Liu Z, Myers LC (2017a) Mediator tail module is required for Tac1-zctivated CDR1 expression and azole resistance in Candida albicans. Antimicrob Agents Chemother 61:1.  https://doi.org/10.1128/AAC.01342-17 Google Scholar
  33. Liu Z, Myers LC (2017b) Candida albicans Swi/Snf and mediator complexes differentially regulate Mrr1-induced MDR1 expression and fluconazole resistance. Antimicrob Agents Chemother 61:1029.  https://doi.org/10.1128/AAC.01344-17 Google Scholar
  34. Liu Z, Moran GP, Sullivan DJ, MacCallum DM, Myers LC (2016) Amplification of TLO Mediator subunit genes facilitate filamentous growth in Candida Spp. PLoS Genet 12:e1006373.  https://doi.org/10.1371/journal.pgen.1006373 CrossRefGoogle Scholar
  35. Long N, Zeng L, Qiao S, Li L, Zhong G (2018) Aspergillus fumigatus Afssn3-Afssn8 pair reverse regulates azole resistance by conferring extracellular polysaccharide, sphingolipid pathway intermediates, and efflux pumps to biofilm. Antimicrob Agents Chemother 62:385.  https://doi.org/10.1128/AAC.01978-17 CrossRefGoogle Scholar
  36. Mason JMO, McEachern MJ (2018) Chromosome ends as adaptive beginnings: the potential role of dysfunctional telomeres in subtelomeric evolvability. Curr Genet 64:997.  https://doi.org/10.1007/s00294-018-0822-z CrossRefGoogle Scholar
  37. Miller MG, Johnson AD (2002) White-opaque switching in Candida albicans is controlled by mating-type locus homeodomain proteins and allows efficient mating. Cell 110:293–302CrossRefGoogle Scholar
  38. Miller C, Matic I, Maier KC, Schwalb B, Roether S, Strässer K, Tresch A, Mann M, Cramer P (2012) Mediator phosphorylation prevents stress response transcription during non-stress conditions. J Biol Chem 287:44017–44026.  https://doi.org/10.1074/jbc.M112.430140 CrossRefGoogle Scholar
  39. Morschhauser J (2010) Regulation of multidrug resistance in pathogenic fungi. Fungal Genet Biol 47:94–106.  https://doi.org/10.1016/j.fgb.2009.08.002 CrossRefGoogle Scholar
  40. Naar AM, Thakur JK (2009) Nuclear receptor-like transcription factors in fungi. Genes Devel 23:419–432.  https://doi.org/10.1101/gad.1743009 CrossRefGoogle Scholar
  41. Nemet J, Jelicic B, Rubelj I, Sopta M (2014) The two faces of Cdk8, a positive/negative regulator of transcription. Biochimie 97:22–27.  https://doi.org/10.1016/j.biochi.2013.10.004 CrossRefGoogle Scholar
  42. Nishikawa JL, Boeszoermenyi A, Vale-Silva LA, Torelli R, Posteraro B, Sohn Y-J, Ji F, Gelev V, Sanglard D, Sanguinetti M, Sadreyev RI, Mukherjee G, Bhyravabhotla J, Buhrlage SJ, Gray NS, Wagner G, Näär AM, Arthanari H (2016) Inhibiting fungal multidrug resistance by disrupting an activator–mediator interaction. Nature 530:485–489.  https://doi.org/10.1038/nature16963 CrossRefGoogle Scholar
  43. Nobile CJ, Andes DR, Nett JE, Smith FJ, Yue F, Phan Q-T, Edwards JE, Filler SG, Mitchell AP (2006) Critical role of Bcr1-dependent adhesins in C. albicans biofilm formation in vitro and in vivo. PLoS Pathog 2:e63–e14.  https://doi.org/10.1371/journal.ppat.0020063 CrossRefGoogle Scholar
  44. Paul S, Moye-Rowley WS (2014) Multidrug resistance in fungi: regulation of transporter-encoding gene expression. Front Physiol 5:143.  https://doi.org/10.3389/fphys.2014.00143 CrossRefGoogle Scholar
  45. Paul S, Schmidt JA, Moye-Rowley WS (2011) Regulation of the CgPdr1 transcription factor from the pathogen Candida glabrata. Eukaryot Cell 10:187–197.  https://doi.org/10.1128/EC.00277-10 CrossRefGoogle Scholar
  46. Pérez JC, Kumamoto CA, Johnson AD (2013) Candida albicans commensalism and pathogenicity are intertwined traits directed by a tightly knit transcriptional regulatory circuit. PLoS Biol 11:e1001510–e1001515.  https://doi.org/10.1371/journal.pbio.1001510 CrossRefGoogle Scholar
  47. Petrenko N, Jin Y, Wong KH, Struhl K (2016) Mediator undergoes a compositional change during transcriptional activation. Mol Cell 64:443–454.  https://doi.org/10.1016/j.molcel.2016.09.015 CrossRefGoogle Scholar
  48. Qi Y, Liu H, Yu J, Chen X, Liu L (2017) Med15B regulates acid stress response and tolerance in Candida glabrata by altering membrane lipid composition. Appl Environ Microbiol 83:155.  https://doi.org/10.1128/AEM.01128-17 CrossRefGoogle Scholar
  49. Ranjan A, Ansari SA (2018) Therapeutic potential of Mediator complex subunits in metabolic diseases. Biochimie 144:41–49.  https://doi.org/10.1016/j.biochi.2017.10.012 CrossRefGoogle Scholar
  50. Sanglard D (2016) Emerging threats in antifungal-resistant fungal pathogens. Front Med 3:11.  https://doi.org/10.3389/fmed.2016.00011 CrossRefGoogle Scholar
  51. Shahi P, Gulshan K, Näär AM, Moye-Rowley WS (2010) Differential roles of transcriptional mediator subunits in regulation of multidrug resistance gene expression in Saccharomyces cerevisiae. Mol Biol Cell 21:2469–2482.  https://doi.org/10.1091/mbc.e09-10-0899 CrossRefGoogle Scholar
  52. Soutourina J (2018) Transcription regulation by the Mediator complex. Nat Rev Mol Cell Biol 19:262–274.  https://doi.org/10.1038/nrm.2017.115 CrossRefGoogle Scholar
  53. Sullivan DJ, Berman J, Myers LC, Moran GP (2015) Telomeric ORFS in Candida albicans: does mediator tail wag the yeast? PLoS Pathog 11:e1004614.  https://doi.org/10.1371/journal.ppat.1004614 CrossRefGoogle Scholar
  54. Tebbji F, Chen Y, Richard Albert J, Gunsalus KTW, Kumamoto CA, Nantel A, Sellam A, Whiteway M (2014) A functional portrait of Med7 and the mediator complex in Candida albicans. PLoS Genet 10:e1004770.  https://doi.org/10.1371/journal.pgen.1004770 CrossRefGoogle Scholar
  55. Thakur JK, Arthanari H, Yang F, Pan S-J, Fan X, Breger J, Frueh DP, Gulshan K, Li DK, Mylonakis E, Struhl K, Moye-Rowley WS, Cormack BP, Wagner G, Näär AM (2008) A nuclear receptor-like pathway regulating multidrug resistance in fungi. Nature 452:604–609.  https://doi.org/10.1038/nature06836 CrossRefGoogle Scholar
  56. Tsai K-L, Tomomori-Sato C, Sato S, Conaway RC, Conaway JW, Asturias FJ (2014) Subunit architecture and functional modular rearrangements of the transcriptional Mediator complex. Cell 157:1430–1444.  https://doi.org/10.1016/j.cell.2014.05.015 CrossRefGoogle Scholar
  57. Uwamahoro N, Qu Y, Jelicic B, Lo TL, Beaurepaire C, Bantun F, Quenault T, Boag PR, Ramm G, Callaghan J, Beilharz TH, Nantel A, Peleg AY, Traven A (2012) The functions of Mediator in Candida albicans support a role in shaping species-specific gene expression. PLoS Genet 8:e1002613.  https://doi.org/10.1371/journal.pgen.1002613 CrossRefGoogle Scholar
  58. Wang L-I, Lin Y-S, Liu K-H, Jong AY, Shen W-C (2011) Cryptococcus neoformans mediator protein Ssn8 negatively regulates diverse physiological processes and is required for virulence. PLoS One 6:e19162–e19119.  https://doi.org/10.1371/journal.pone.0019162 CrossRefGoogle Scholar
  59. Zhang A, Petrov KO, Hyun ER, Liu Z, Gerber SA, Myers LC (2012) The Tlo proteins are stoichiometric components of Candida albicans Mediator anchored via the Med3 subunit. Eukaryot Cell 11:874–884.  https://doi.org/10.1128/EC.00095-12 CrossRefGoogle Scholar
  60. Zhang A, Liu Z, Myers LC (2013) Differential regulation of white-opaque switching by individual subunits of Candida albicans mediator. Eukaryot Cell 12:1293–1304.  https://doi.org/10.1128/EC.00137-13 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Division of Oral BiosciencesDublin Dental University HospitalDublinIreland
  2. 2.School of Dental Science, Trinity College DublinUniversity of DublinDublinIreland
  3. 3.Department of Microbial Infection and ImmunityThe Ohio State UniversityColumbusUSA
  4. 4.Department of Medical EducationGeisel School of Medicine at DartmouthHanoverUSA
  5. 5.Department of Biochemistry and Cell BiologyGeisel School of Medicine at DartmouthHanoverUSA

Personalised recommendations