Advertisement

Current Genetics

, Volume 65, Issue 2, pp 453–456 | Cite as

A helicase links upstream ORFs and RNA structure

  • Eckhard JankowskyEmail author
  • Ulf-Peter Guenther
Mini-Review

Abstract

Upstream open reading frames (uORFs) in 5′ UTRs of eukaryotic mRNAs are increasingly recognized as important elements that regulate cellular protein synthesis. Since uORFs can start from non-AUG codons, an enormous number of potential uORF initiation sites exists in 5′UTRs. However, only a subset of these sites is used and it has been unclear how actual start sites are selected. Studies of the DEAD-box helicase Ded1p from S. cerevisiae show that translation of uORFs with non-AUG initiation codons occurs upstream of mRNA structures that emerge with defective Ded1p. The data designate mRNA structure as important determinant for non-AUG initiation sites of uORFs. Ded1p can control this RNA structure and thereby regulate uORF translation.

Keywords

uORF Ribosome profiling RNA structure Helicase Translation CLIP DEAD-box Riboswitch Yeast Meiosis Near-cognate codon 

Notes

Acknowledgements

Work in our laboratory is supported by the NIH (GM118088 to E.J.).

References

  1. Andrews SJ, Rothnagel JA (2014) Emerging evidence for functional peptides encoded by short open reading frames. Nat Rev Genet 15:193–204CrossRefGoogle Scholar
  2. Barbosa C, Peixeiro I, Romao L (2013) Gene expression regulation by upstream open reading frames and human disease. PLoS Genet 9:e1003529CrossRefGoogle Scholar
  3. Bol GM, Xie M, Raman V (2015) DDX3, a potential target for cancer treatment. Mol Cancer 14:188CrossRefGoogle Scholar
  4. Brar GA, Yassour M, Friedman N, Regev A, Ingolia NT, Weissman JS (2012) High-resolution view of the yeast meiotic program revealed by ribosome profiling. Science 335:552–557CrossRefGoogle Scholar
  5. Cabrera-Quio LE, Herberg S, Pauli A (2016) Decoding sORF translation—from small proteins to gene regulation. RNA Biol 13:1051–1059CrossRefGoogle Scholar
  6. Chuang RY, Weaver PL, Liu Z, Chang TH (1997) Requirement of the DEAD-Box protein ded1p for messenger RNA translation. Science 275:1468–1471CrossRefGoogle Scholar
  7. Cleary JD, Ranum LP (2017) New developments in RAN translation: insights from multiple diseases. Curr Opin Genet Dev 44:125–134CrossRefGoogle Scholar
  8. de la Cruz J, Iost I, Kressler D, Linder P (1997) The p20 and Ded1 proteins have antagonistic roles in eIF4E-dependent translation in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 94:5201–5206CrossRefGoogle Scholar
  9. Gao Z, Putnam AA, Bowers HA, Guenther UP, Ye X, Kindsfather A, Hilliker AK, Jankowsky E (2016) Coupling between the DEAD-box RNA helicases Ded1p and eIF4A. Elife 5:e16408CrossRefGoogle Scholar
  10. Guenther UP, Weinberg DE, Zubradt MM, Tedeschi FA, Stawicki BN, Zagore LL, Brar GA, Licatalosi DD, Bartel DP, Weissman JS et al (2018) The helicase Ded1p controls use of near-cognate translation initiation codons in 5′ UTRs. Nature 559:130–134CrossRefGoogle Scholar
  11. Hinnebusch AG (2014) The scanning mechanism of eukaryotic translation initiation. Annu Rev Biochem 83:779–812CrossRefGoogle Scholar
  12. Hinnebusch AG, Ivanov IP, Sonenberg N (2016) Translational control by 5′-untranslated regions of eukaryotic mRNAs. Science 352:1413–1416CrossRefGoogle Scholar
  13. Ingolia NT (2016) Ribosome footprint profiling of translation throughout the genome. Cell 165:22–33CrossRefGoogle Scholar
  14. Johnstone TG, Bazzini AA, Giraldez AJ (2016) Upstream ORFs are prevalent translational repressors in vertebrates. EMBO J 35:706–723CrossRefGoogle Scholar
  15. Kearse MG, Wilusz JE (2017) Non-AUG translation: a new start for protein synthesis in eukaryotes. Genes Dev 31:1717–1731CrossRefGoogle Scholar
  16. Kolitz SE, Takacs JE, Lorsch JR (2009) Kinetic and thermodynamic analysis of the role of start codon/anticodon base pairing during eukaryotic translation initiation. RNA 15:138–152CrossRefGoogle Scholar
  17. Kozak M (1990) Downstream secondary structure facilitates recognition of initiator codons by eukaryotic ribosomes. Proc Natl Acad Sci USA 87:8301–8305CrossRefGoogle Scholar
  18. Martin F, Barends S, Jaeger S, Schaeffer L, Prongidi-Fix L, Eriani G (2011) Cap-assisted internal initiation of translation of histone H4. Mol Cell 41:197–209CrossRefGoogle Scholar
  19. Putnam AA, Jankowsky E (2013) AMP sensing by DEAD-box RNA helicases. J Mol Biol 425:3839–3845CrossRefGoogle Scholar
  20. Schulz J, Mah N, Neuenschwander M, Kischka T, Ratei R, Schlag PM, Castanos-Velez E, Fichtner I, Tunn PU, Denkert C et al (2018) Loss-of-function uORF mutations in human malignancies. Sci Rep 8:2395CrossRefGoogle Scholar
  21. Sen ND, Zhou F, Ingolia NT, Hinnebusch AG (2015) Genome-wide analysis of translational efficiency reveals distinct but overlapping functions of yeast DEAD-box RNA helicases Ded1 and eIF4A. Genome Res 25:1196–1205CrossRefGoogle Scholar
  22. Sharma D, Jankowsky E (2014) The Ded1/DDX3 subfamily of DEAD-box RNA helicases. Crit Rev Biochem Mol Biol 49:343–360CrossRefGoogle Scholar
  23. Shirokikh NE, Preiss T (2018) Translation initiation by cap-dependent ribosome recruitment: recent insights and open questions. Wiley Interdiscip Rev RNA 9:e1473CrossRefGoogle Scholar
  24. Snijders Blok L, Madsen E, Juusola J, Gilissen C, Baralle D, Reijnders MR, Venselaar H, Helsmoortel C, Cho MT, Hoischen A et al (2015) Mutations in DDX3X are a common cause of unexplained intellectual disability with gender-specific effects on Wnt signaling. Am J Hum Genet 97:343–352CrossRefGoogle Scholar
  25. Spealman P, Naik AW, May GE, Kuersten S, Freeberg L, Murphy RF, McManus J (2018) Conserved non-AUG uORFs revealed by a novel regression analysis of ribosome profiling data. Genome Res 28:214–222CrossRefGoogle Scholar
  26. Starck SR, Tsai JC, Chen K, Shodiya M, Wang L, Yahiro K, Martins-Green M, Shastri N, Walter P (2016) Translation from the 5′ untranslated region shapes the integrated stress response. Science 351:aad3867CrossRefGoogle Scholar
  27. Tang HL, Yeh LS, Chen NK, Ripmaster T, Schimmel P, Wang CC (2004) Translation of a yeast mitochondrial tRNA synthetase initiated at redundant non-AUG codons. J Biol Chem 279:49656–49663CrossRefGoogle Scholar
  28. Zhang H, Dou S, He F, Luo J, Wei L, Lu J (2018) Genome-wide maps of ribosomal occupancy provide insights into adaptive evolution and regulatory roles of uORFs during Drosophila development. PLoS Biol 16:e2003903CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center for RNA Science and Therapeutics, School of MedicineCase Western Reserve UniversityClevelandUSA
  2. 2.EMBLHeidelbergGermany

Personalised recommendations