Advertisement

Current Genetics

, Volume 65, Issue 2, pp 407–415 | Cite as

Condensin action and compaction

  • Matthew Robert Paul
  • Andreas HochwagenEmail author
  • Sevinç ErcanEmail author
Mini-Review

Abstract

Condensin is a multi-subunit protein complex that belongs to the family of structural maintenance of chromosomes (SMC) complexes. Condensins regulate chromosome structure in a wide range of processes including chromosome segregation, gene regulation, DNA repair and recombination. Recent research defined the structural features and molecular activities of condensins, but it is unclear how these activities are connected to the multitude of phenotypes and functions attributed to condensins. In this review, we briefly discuss the different molecular mechanisms by which condensins may regulate global chromosome compaction, organization of topologically associated domains, clustering of specific loci such as tRNA genes, rDNA segregation, and gene regulation.

Keywords

Genome organization Condensin Chromosome interactions gene expression TADs SMC complexes rDNA tRNA Clustering Chromosome segregation Transcription 

References

  1. Abdennur N, Schwarzer W, Pekowska A et al (2018) Condensin II inactivation in interphase does not affect chromatin folding or gene expression. bioRxiv.  https://doi.org/10.1101/437459 Google Scholar
  2. Akai Y, Kurokawa Y, Nakazawa N et al (2011) Opposing role of condensin hinge against replication protein A in mitosis and interphase through promoting DNA annealing. Open Biol 1:110023.  https://doi.org/10.1098/rsob.110023 Google Scholar
  3. Albritton SE, Ercan S (2018) Caenorhabditis elegans dosage compensation: insights into condensin-mediated gene regulation. Trends Genet 34:41–53.  https://doi.org/10.1016/j.tig.2017.09.010 Google Scholar
  4. Bauer CR, Hartl TA, Bosco G (2012) Condensin II promotes the formation of chromosome territories by inducing axial compaction of polyploid interphase chromosomes. PLoS Genet 8:e1002873.  https://doi.org/10.1371/journal.pgen.1002873 Google Scholar
  5. Bhalla N, Biggins S, Murray A (2002) Mutation of YCS4, a budding yeast condensin subunit, affects mitotic and nonmitotic chromosome behavior. Mol Biol Cell 13:632–645.  https://doi.org/10.1091/MBC.01-05-0264 Google Scholar
  6. Bian Q, Anderson EC, Brejc K, Meyer BJ (2017) Dynamic control of chromosome topology and gene expression by a chromatin modification. Cold Spring Harb Symp Quant Biol 82:279–291.  https://doi.org/10.1101/sqb.2017.82.034439 Google Scholar
  7. Branco MR, Pombo A (2006) Intermingling of chromosome territories in interphase suggests role in translocations and transcription-dependent associations. PLoS Biol 4:e138.  https://doi.org/10.1371/journal.pbio.0040138 Google Scholar
  8. Brejc K, Bian Q, Uzawa S et al (2017) Dynamic control of X chromosome conformation and repression by a histone H4K20 demethylase. Cell 171:85–102.e23.  https://doi.org/10.1016/j.cell.2017.07.041 Google Scholar
  9. Brideau NJ, Coker H, Gendrel A-V et al (2015) Independent mechanisms target SMCHD1 to trimethylated histone H3 lysine 9-modified chromatin and the inactive X chromosome. Mol Cell Biol 35:4053.  https://doi.org/10.1128/MCB.00432-15 Google Scholar
  10. Chan RC, Severson AF, Meyer BJ (2004) Condensin restructures chromosomes in preparation for meiotic divisions. J Cell Biol 167:613–625.  https://doi.org/10.1083/jcb.200408061 Google Scholar
  11. Chao LF-I, Singh M, Thompson J et al (2017) An SMC-like protein binds and regulates Caenorhabditis elegans condensins. PLoS Genet 13:e1006614.  https://doi.org/10.1371/journal.pgen.1006614 Google Scholar
  12. Chen K, Hu J, Moore DL et al (2015) Genome-wide binding and mechanistic analyses of Smchd1-mediated epigenetic regulation. Proc Natl Acad Sci USA 112:E3535–E3544.  https://doi.org/10.1073/pnas.1504232112 Google Scholar
  13. Clemente-Blanco A, Mayán-Santos M, Schneider DA et al (2009) Cdc14 inhibits transcription by RNA polymerase I during anaphase. Nature 458:219–222.  https://doi.org/10.1038/nature07652 Google Scholar
  14. Crane E, Bian Q, McCord RP et al (2015) Condensin-driven remodelling of X chromosome topology during dosage compensation. Nature 523:240–244.  https://doi.org/10.1038/nature14450 Google Scholar
  15. Csankovszki G, Collette K, Spahl K et al (2009) Three distinct condensin complexes control C. elegans chromosome dynamics. Curr Biol 19:9–19.  https://doi.org/10.1016/j.cub.2008.12.006 Google Scholar
  16. Cuylen S, Haering CH (2011) Deciphering condensin action during chromosome segregation. Trends Cell Biol 21:552–559.  https://doi.org/10.1016/j.tcb.2011.06.003 Google Scholar
  17. Cuylen S, Metz J, Haering CH (2011) Condensin structures chromosomal DNA through topological links. Nat Struct Mol Biol 18:894–901.  https://doi.org/10.1038/nsmb.2087 Google Scholar
  18. D’Ambrosio C, Kelly G, Shirahige K, Uhlmann F (2008a) Condensin-dependent rDNA decatenation introduces a temporal pattern to chromosome segregation. Curr Biol 18:1084–1089.  https://doi.org/10.1016/j.cub.2008.06.058 Google Scholar
  19. D’Ambrosio C, Schmidt CK, Katou Y et al (2008b) Identification of cis-acting sites for condensin loading onto budding yeast chromosomes. Genes Dev 22:2215–2227.  https://doi.org/10.1101/gad.1675708 Google Scholar
  20. D’Amours D, Stegmeier F, Amon A (2004) Cdc14 and condensin control the dissolution of cohesin-independent chromosome linkages at repeated DNA. Cell 117:455–469.  https://doi.org/10.1016/S0092-8674(04)00413-1 Google Scholar
  21. de los Santos-Velázquez AI, de Oya IG, Manzano-López J, Monje-Casas F (2017) Late rDNA condensation ensures timely Cdc14 release and coordination of mitotic exit signaling with nucleolar segregation. Curr Biol 27:3248–3263.e5.  https://doi.org/10.1016/J.CUB.2017.09.028 Google Scholar
  22. Dowen JM, Bilodeau S, Orlando DA et al (2013) Multiple structural maintenance of chromosome complexes at transcriptional regulatory elements. Stem Cell Reports 1:371–378.  https://doi.org/10.1016/j.stemcr.2013.09.002 Google Scholar
  23. Du M, Bai L (2017) 3D clustering of co-regulated genes and its effect on gene expression. Curr Genet 63:1017–1021.  https://doi.org/10.1007/s00294-017-0712-9 Google Scholar
  24. Dulev S, Aragon L, Strunnikov A (2008) Unreplicated DNA in mitosis precludes condensin binding and chromosome condensation in S. cerevisiae. Front Biosci 13:5838–5846Google Scholar
  25. Fazzio TG, Panning B (2010) Condensin complexes regulate mitotic progression and interphase chromatin structure in embryonic stem cells. J Cell Biol 188:491–503.  https://doi.org/10.1083/jcb.200908026 Google Scholar
  26. Feric M, Vaidya N, Harmon TS et al (2016) Coexisting liquid phases underlie nucleolar subcompartments. Cell 165:1686–1697.  https://doi.org/10.1016/J.CELL.2016.04.047 Google Scholar
  27. Freeman L, Aragon-Alcaide L, Strunnikov A (2000) The condensin complex governs chromosome condensation and mitotic transmission of rDNA. J Cell Biol 149:811–824Google Scholar
  28. Fudenberg G, Imakaev M, Lu C et al (2016) Formation of chromosomal domains by loop extrusion. Cell Rep 15:2038–2049.  https://doi.org/10.1016/j.celrep.2016.04.085 Google Scholar
  29. Ganji M, Shaltiel IA, Bisht S et al (2018) Real-time imaging of DNA loop extrusion by condensin. Science.  https://doi.org/10.1126/science.aar7831 Google Scholar
  30. George CM, Bozler J, Nguyen HQ, Bosco G (2014) Condensins are required for maintenance of nuclear architecture. Cells 3:865–882.  https://doi.org/10.3390/cells3030865 Google Scholar
  31. Gibcus JH, Samejima K, Goloborodko A et al (2018) A pathway for mitotic chromosome formation. Science.  https://doi.org/10.1126/science.aao6135 Google Scholar
  32. Ginno PA, Burger L, Seebacher J et al (2018) Cell cycle-resolved chromatin proteomics reveals the extent of mitotic preservation of the genomic regulatory landscape. Nat Commun 9:4048.  https://doi.org/10.1038/s41467-018-06007-5 Google Scholar
  33. Goloborodko A, Imakaev MV, Marko JF, Mirny L (2016a) Compaction and segregation of sister chromatids via active loop extrusion. Elife.  https://doi.org/10.7554/eLife.14864 Google Scholar
  34. Goloborodko A, Marko JF, Mirny LA (2016b) Chromosome compaction by active loop extrusion. Biophys J 110:2162–2168.  https://doi.org/10.1016/j.bpj.2016.02.041 Google Scholar
  35. Gottesfeld JM, Forbes DJ (1997) Mitotic repression of the transcriptional machinery. Trends Biochem Sci 22:197–202.  https://doi.org/10.1016/S0968-0004(97)01045-1 Google Scholar
  36. Green LC, Kalitsis P, Chang TM et al (2012) Contrasting roles of condensin I and condensin II in mitotic chromosome formation. J Cell Sci 125:1591–1604.  https://doi.org/10.1242/jcs.097790 Google Scholar
  37. Haeusler RA, Pratt-Hyatt M, Good PD et al (2008) Clustering of yeast tRNA genes is mediated by specific association of condensin with tRNA gene transcription complexes. Genes Dev 22:2204–2214.  https://doi.org/10.1101/gad.1675908 Google Scholar
  38. Hagstrom KA, Holmes VF, Cozzarelli NR, Meyer BJ (2002) C. elegans condensin promotes mitotic chromosome architecture, centromere organization, and sister chromatid segregation during mitosis and meiosis. Genes Dev 16:729–742.  https://doi.org/10.1101/gad.968302 Google Scholar
  39. Hartl TA, Smith HF, Bosco G (2008) Chromosome alignment and transvection are antagonized by condensin II. Science 322:1384–1387.  https://doi.org/10.1126/science.1164216 Google Scholar
  40. Hirano T (2016) Condensin-based chromosome organization from bacteria to vertebrates. Cell 164:847–857.  https://doi.org/10.1016/j.cell.2016.01.033 Google Scholar
  41. Hirano T, Funahashi S, Uemura T, Yanagida M (1986) Isolation and characterization of Schizosaccharomyces pombe cutmutants that block nuclear division but not cytokinesis. EMBO J 5:2973–2979Google Scholar
  42. Hirano T, Kobayashi R, Hirano M (1997) Condensins, chromosome condensation protein complexes containing XCAP-C, XCAP-E and a Xenopus homolog of the Drosophila Barren protein. Cell 89:511–521.  https://doi.org/10.1016/S0092-8674(00)80233-0 Google Scholar
  43. Hirota T, Gerlich D, Koch B et al (2004) Distinct functions of condensin I and II in mitotic chromosome assembly. J Cell Sci 117:6435–6445.  https://doi.org/10.1242/jcs.01604 Google Scholar
  44. Hocquet C, Robellet X, Modolo L et al (2018) Condensin controls cellular RNA levels through the accurate segregation of chromosomes instead of directly regulating transcription. Elife.  https://doi.org/10.7554/eLife.38517 Google Scholar
  45. Houlard M, Godwin J, Metson J et al (2015) Condensin confers the longitudinal rigidity of chromosomes. Nat Cell Biol 17:771–781.  https://doi.org/10.1038/ncb3167 Google Scholar
  46. Huang K, Jia J, Wu C et al (2013) Ribosomal RNA Gene transcription mediated by the master genome regulator protein CCCTC-binding factor (CTCF) is negatively regulated by the condensin complex. J Biol Chem 288:26067–26077.  https://doi.org/10.1074/jbc.M113.486175 Google Scholar
  47. Iwasaki O, Tanaka A, Tanizawa H et al (2010) Centromeric localization of dispersed Pol III genes in fission yeast. Mol Biol Cell 21:254–265.  https://doi.org/10.1091/mbc.E09-09-0790 Google Scholar
  48. Iwasaki O, Tanizawa H, Kim K-D et al (2015) Interaction between TBP and condensin drives the organization and faithful segregation of mitotic chromosomes. Mol Cell 59:755–767.  https://doi.org/10.1016/j.molcel.2015.07.007 Google Scholar
  49. Jansz N, Keniry A, Trussart M et al (2018) Smchd1 regulates long-range chromatin interactions on the inactive X chromosome and at Hox clusters. Nat Struct Mol Biol 25:766–777.  https://doi.org/10.1038/s41594-018-0111-z Google Scholar
  50. Johzuka K, Terasawa M, Ogawa H et al (2006) Condensin loaded onto the replication fork barrier site in the rRNA gene repeats during S phase in a FOB1-dependent fashion to prevent contraction of a long repetitive array in Saccharomyces cerevisiae. Mol Cell Biol 26:2226–2236.  https://doi.org/10.1128/MCB.26.6.2226-2236.2006 Google Scholar
  51. Kakui Y, Uhlmann F (2018) SMC complexes orchestrate the mitotic chromatin interaction landscape. Curr Genet 64:335–339.  https://doi.org/10.1007/s00294-017-0755-y Google Scholar
  52. Kakui Y, Rabinowitz A, Barry DJ, Uhlmann F (2017) Condensin-mediated remodeling of the mitotic chromatin landscape in fission yeast. Nat Genet 49:1553–1557.  https://doi.org/10.1038/ng.3938 Google Scholar
  53. Kim JH, Zhang T, Wong NC et al (2013) Condensin I associates with structural and gene regulatory regions in vertebrate chromosomes. Nat Commun 4:2537.  https://doi.org/10.1038/ncomms3537 Google Scholar
  54. Kim KD, Tanizawa H, Iwasaki O, Noma K (2016) Transcription factors mediate condensin recruitment and global chromosomal organization in fission yeast. Nat Genet 48:1242–1252.  https://doi.org/10.1038/ng.3647 Google Scholar
  55. Kinoshita K, Hirano T (2017) Dynamic organization of mitotic chromosomes. Curr Opin Cell Biol 46:46–53.  https://doi.org/10.1016/j.ceb.2017.01.006 Google Scholar
  56. Kramer M, Kranz AL, Su A et al (2015) Developmental dynamics of X-Chromosome dosage compensation by the DCC and H4K20me1 in C. elegans. PLoS Genet 11:e1005698.  https://doi.org/10.1371/journal.pgen.1005698 Google Scholar
  57. Kranz AL, Jiao CY, Winterkorn LH et al (2013) Genome-wide analysis of condensin binding in Caenorhabditis elegans. Genome Biol 14:R112.  https://doi.org/10.1186/gb-2013-14-10-r112 Google Scholar
  58. Lau AC, Csankovszki G (2015) Balancing up and downregulation of the C. elegans X chromosomes. Curr Opin Genet Dev 31:50–56.  https://doi.org/10.1016/j.gde.2015.04.001 Google Scholar
  59. Lau AC, Nabeshima K, Csankovszki G (2014) The C. elegans dosage compensation complex mediates interphase X chromosome compaction. Epigenetics Chromatin 7:31.  https://doi.org/10.1186/1756-8935-7-31 Google Scholar
  60. Lazar-Stefanita L, Scolari VF, Mercy G et al (2017) Cohesins and condensins orchestrate the 4D dynamics of yeast chromosomes during the cell cycle. EMBO J.  https://doi.org/10.15252/embj.201797342 Google Scholar
  61. Li P, Jin H, Yu H-GG (2014) Condensin suppresses recombination and regulates double-strand break processing at the repetitive ribosomal DNA array to ensure proper chromosome segregation during meiosis in budding yeast. Mol Biol Cell 25:2934–2947.  https://doi.org/10.1091/mbc.E14-05-0957 Google Scholar
  62. Li L, Lyu X, Hou C et al (2015a) Widespread rearrangement of 3D chromatin organization underlies polycomb-mediated stress-induced silencing. Mol Cell 58:216–231.  https://doi.org/10.1016/j.molcel.2015.02.023 Google Scholar
  63. Li W, Hu Y, Oh S et al (2015b) Condensin I and II complexes license full estrogen receptor α-dependent enhancer activation. Mol Cell 59:188–202.  https://doi.org/10.1016/j.molcel.2015.06.002 Google Scholar
  64. Longworth MS, Walker JA, Anderssen E et al (2012) A Shared Role for RBF1 and dCAP-D3 in the regulation of transcription with consequences for innate immunity. PLoS Genet 8:e1002618.  https://doi.org/10.1371/journal.pgen.1002618 Google Scholar
  65. Lupianez DG, Kraft K, Heinrich V et al (2015) Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell 161:1012–1025.  https://doi.org/10.1016/j.cell.2015.04.004 Google Scholar
  66. Lupo R, Breiling A, Bianchi ME, Orlando V (2001) Drosophila chromosome condensation proteins topoisomerase II and Barren colocalize with Polycomb and maintain Fab-7 PRE silencing. Mol Cell 7:127–136.  https://doi.org/10.1016/S1097-2765(01)00161-7 Google Scholar
  67. Machín F, Torres-Rosell J, Jarmuz A, Aragón L (2005) Spindle-independent condensation-mediated segregation of yeast ribosomal DNA in late anaphase. J Cell Biol 168:209.  https://doi.org/10.1083/JCB.200408087 Google Scholar
  68. Machín F, Torres-Rosell J, Piccoli G, De et al (2006) Transcription of ribosomal genes can cause nondisjunction. J Cell Biol 173:893–903.  https://doi.org/10.1083/JCB.200511129 Google Scholar
  69. Martin C-A, Murray JE, Carroll P et al (2016) Mutations in genes encoding condensin complex proteins cause microcephaly through decatenation failure at mitosis. Genes Dev 30:2158–2172.  https://doi.org/10.1101/gad.286351.116 Google Scholar
  70. Martínez-Balbás MA, Dey A, Rabindran SK et al (1995) Displacement of sequence-specific transcription factors from mitotic chromatin. Cell 83:29–38.  https://doi.org/10.1016/0092-8674(95)90231-7 Google Scholar
  71. Matos-Perdomo E, Machín F (2018) The ribosomal DNA metaphase loop of Saccharomyces cerevisiae gets condensed upon heat stress in a Cdc14-independent TORC1-dependent manner. Cell Cycle 17:200.  https://doi.org/10.1080/15384101.2017.1407890 Google Scholar
  72. Mellert DJ, Truman JW (2012) Transvection is common throughout the drosophila genome. Genetics 191:1129–1141.  https://doi.org/10.1534/genetics.112.140475 Google Scholar
  73. Nasmyth K (2001) Disseminating the genome: joining, resolving, and separating sister chromatids during mitosis and meiosis. Annu Rev Genet 35:673–745.  https://doi.org/10.1146/annurev.genet.35.102401.091334 Google Scholar
  74. Nishide K, Hirano T (2014) Overlapping and non-overlapping functions of condensins I and II in neural stem cell divisions. PLoS Genet 10:e1004847.  https://doi.org/10.1371/journal.pgen.1004847 Google Scholar
  75. Nozawa R-S, Nagao K, Igami K-T et al (2013) Human inactive X chromosome is compacted through a PRC2-independent SMCHD1-HBiX1 pathway. Nat Struct Mol Biol 20:566–573.  https://doi.org/10.1038/nsmb.2532 Google Scholar
  76. Paul MR, Markowitz TE, Hochwagen A, Ercan S (2018) Condensin depletion causes genome decompaction without altering the level of global gene expression in saccharomyces cerevisiae. Genetics 210(1):331–344.  https://doi.org/10.1534/genetics.118.301217 Google Scholar
  77. Rao SS, Huntley MH, Durand NC et al (2014) A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159:1665–1680.  https://doi.org/10.1016/j.cell.2014.11.021 Google Scholar
  78. Robellet X, Vanoosthuyse V, Bernard P (2017) The loading of condensin in the context of chromatin. Curr Genet 63:577–589.  https://doi.org/10.1007/s00294-016-0669-0 Google Scholar
  79. Rosin LF, Nguyen SC, Joyce EF (2018) Condensin II drives large-scale folding and spatial partitioning of interphase chromosomes in Drosophila nuclei. PLoS Genet 14:e1007393.  https://doi.org/10.1371/journal.pgen.1007393 Google Scholar
  80. Sabari BR, Dall’Agnese A, Boija A et al (2018) Coactivator condensation at super-enhancers links phase separation and gene control. Science 361:eaar3958.  https://doi.org/10.1126/science.aar3958 Google Scholar
  81. Saka Y, Sutani T, Yamashita Y et al (1994) Fission yeast cut3 and cut14, members of a ubiquitous protein family, are required for chromosome condensation and segregation in mitosis. EMBO J 13:4938–4952.  https://doi.org/10.1002/j.1460-2075.1994.tb06821.x Google Scholar
  82. Sakai Y, Mochizuki A, Kinoshita K et al (2018) Modeling the functions of condensin in chromosome shaping and segregation. PLOS Comput Biol 14:e1006152.  https://doi.org/10.1371/journal.pcbi.1006152 Google Scholar
  83. Samoshkin A, Dulev S, Loukinov D et al (2012) Condensin dysfunction in human cells induces nonrandom chromosomal breaks in anaphase, with distinct patterns for both unique and repeated genomic regions. Chromosoma 121:191–199.  https://doi.org/10.1007/s00412-011-0353-6 Google Scholar
  84. Sawyer IA, Bartek J, Dundr M (2018) Phase separated microenvironments inside the cell nucleus are linked to disease and regulate epigenetic state, transcription and RNA processing. Semin Cell Dev Biol.  https://doi.org/10.1016/j.semcdb.2018.07.001 Google Scholar
  85. Schalbetter SA, Goloborodko A, Fudenberg G et al (2017) SMC complexes differentially compact mitotic chromosomes according to genomic context. Nat Cell Biol.  https://doi.org/10.1038/ncb3594 Google Scholar
  86. Schuster AT, Sarvepalli K, Murphy EA, Longworth MS (2013) Condensin II subunit dCAP-D3 restricts retrotransposon mobilization in Drosophila somatic cells. PLoS Genet 9:e1003879.  https://doi.org/10.1371/journal.pgen.1003879 Google Scholar
  87. Schuster AT, Homer CR, Kemp JR et al (2015) Chromosome-associated protein D3 promotes bacterial clearance in human intestinal epithelial cells by repressing expression of amino acid transporters. Gastroenterology 148:1405–1416.e3.  https://doi.org/10.1053/j.gastro.2015.02.013 Google Scholar
  88. Segil N, Guermah M, Hoffmann A et al (1996) Mitotic regulation of TFIID: inhibition of activator-dependent transcription and changes in subcellular localization. Genes Dev 10:2389–2400.  https://doi.org/10.1101/GAD.10.19.2389 Google Scholar
  89. Sexton T, Yaffe E, Kenigsberg E et al (2012) Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 148:458–472.  https://doi.org/10.1016/j.cell.2012.01.010 Google Scholar
  90. Smith HF, Roberts MA, Nguyen HQ et al (2013) Maintenance of interphase chromosome compaction and homolog pairing in drosophila is regulated by the condensin Cap-H2 and its partner Mrg15. Genetics 195(1):127–146.  https://doi.org/10.1534/genetics.113.153544 Google Scholar
  91. Smith SJ, Osman K, Franklin FCH (2014) The condensin complexes play distinct roles to ensure normal chromosome morphogenesis during meiotic division in Arabidopsis. Plant J 80:255–268.  https://doi.org/10.1111/tpj.12628 Google Scholar
  92. Stray JE, Lindsley JE (2003) Biochemical analysis of the yeast condensin Smc2/4 complex: an ATPase that promotes knotting of circular DNA. J Biol Chem 278:26238–26248.  https://doi.org/10.1074/jbc.M302699200 Google Scholar
  93. Sutani T, Sakata T, Nakato R et al (2015) Condensin targets and reduces unwound DNA structures associated with transcription in mitotic chromosome condensation. Nat Commun 6:7815.  https://doi.org/10.1038/ncomms8815 Google Scholar
  94. Swygert SG, Kim S, Wu X et al (2018) Condensin-dependent chromatin condensation represses transcription globally during quiescence. bioRxiv.  https://doi.org/10.1101/320895 Google Scholar
  95. Tanaka A, Tanizawa H, Sriswasdi S et al (2012) Epigenetic regulation of condensin-mediated genome organization during the cell cycle and upon DNA damage through histone H3 lysine 56 acetylation. Mol Cell 48:532–546.  https://doi.org/10.1016/j.molcel.2012.09.011 Google Scholar
  96. Terakawa T, Bisht S, Eeftens JM et al (2017) The condensin complex is a mechanochemical motor that translocates along DNA. Science 358:672–676.  https://doi.org/10.1126/science.aan6516 Google Scholar
  97. Tsang CK, Zheng XFS (2009) Opposing role of condensin and radiation-sensitive gene RAD52 in ribosomal DNA stability regulation. J Biol Chem 284:21908–21919.  https://doi.org/10.1074/jbc.M109.031302 Google Scholar
  98. Tsang C, Bertram P, Ai W et al (2003) Chromatin-mediated regulation of nucleolar structure and RNA Pol I localization by TOR. EMBO J 22:6045–6056.  https://doi.org/10.1093/EMBOJ/CDG578 Google Scholar
  99. Tsang C, Li H, Zheng X (2007a) Nutrient starvation promotes condensin loading to maintain rDNA stability. EMBO J 26:448–458.  https://doi.org/10.1038/SJ.EMBOJ.7601488 Google Scholar
  100. Tsang CK, Wei Y, Zheng XF (2007b) Compacting DNA during the interphase: condensin maintains rDNA integrity. Cell Cycle 6:2213–2218.  https://doi.org/10.4161/cc.6.18.4733 Google Scholar
  101. van Ruiten MS, Rowland BD (2018) SMC complexes: universal DNA looping machines with distinct regulators. Trends Genet 34:477–487.  https://doi.org/10.1016/j.tig.2018.03.003 Google Scholar
  102. Van Bortle K, Nichols MH, Li L et al (2014) Insulator function and topological domain border strength scale with architectural protein occupancy. Genome Biol 15:R82.  https://doi.org/10.1186/gb-2014-15-5-r82 Google Scholar
  103. Vielle A, Lang J, Dong Y et al (2012) H4K20me1 contributes to downregulation of X-linked genes for C. elegans dosage compensation. PLoS Genet 8:e1002933.  https://doi.org/10.1371/journal.pgen.1002933 Google Scholar
  104. Wallace HA, Klebba JE, Kusch T, et al (2015) Condensin II regulates interphase chromatin organization through the Mrg-binding motif of cap-H2. G3: Genes Genom Genet 5:803–817.  https://doi.org/10.1534/g3.115.016634 Google Scholar
  105. Walther N, Hossain MJ, Politi AZ et al (2018) A quantitative map of human condensins provides new insights into mitotic chromosome architecture. J Cell Biol.  https://doi.org/10.1083/jcb.201801048 Google Scholar
  106. Wang B-D, Butylin P, Strunnikov A (2006) Condensin function in mitotic nucleolar segregation is regulated by rDNA transcription. Cell Cycle 5:2260.  https://doi.org/10.4161/CC.5.19.3292 Google Scholar
  107. Wang J, Geesman GJ, Hostikka SL et al (2011) Inhibition of activated pericentromeric SINE/Alu repeat transcription in senescent human adult stem cells reinstates self-renewal. Cell Cycle 10:3016–3030.  https://doi.org/10.4161/cc.10.17.17543 Google Scholar
  108. Wang DN, Mansisidor A, Prabhakar G, Hochwagen A (2016) Condensin and Hmo1 mediate a starvation-induced transcriptional position effect within the ribosomal DNA array. Cell Rep 17:624.  https://doi.org/10.1016/j.celrep.2016.09.057 Google Scholar
  109. Wang J, Blevins T, Podicheti R et al (2017a) Mutation of Arabidopsis SMC4 identifies condensin as a corepressor of pericentromeric transposons and conditionally expressed genes. Genes Dev 31:1601–1614.  https://doi.org/10.1101/gad.301499.117 Google Scholar
  110. Wang X, Brandão HB, Le TBK et al (2017b) Bacillus subtilis SMC complexes juxtapose chromosome arms as they travel from origin to terminus. Science 355:524–527.  https://doi.org/10.1126/science.aai8982 Google Scholar
  111. Wang C-Y, Jégu T, Chu H-P et al (2018a) SMCHD1 Merges chromosome compartments and assists formation of super-structures on the inactive X. Cell 174:406–421.e25.  https://doi.org/10.1016/j.cell.2018.05.007 Google Scholar
  112. Wang X, Hughes AC, Brandão HB et al (2018b) In Vivo evidence for ATPase-dependent DNA translocation by the Bacillus subtilis SMC condensin complex. Mol Cell 71:841–847.e5.  https://doi.org/10.1016/j.molcel.2018.07.006 Google Scholar
  113. Ward JR, Vasu K, Deutschman E et al (2017) Condensin II and GAIT complexes cooperate to restrict LINE-1 retrotransposition in epithelial cells. PLoS Genet 13:e1007051.  https://doi.org/10.1371/journal.pgen.1007051 Google Scholar
  114. Wells MB, Snyder MJ, Custer LM, Csankovszki G (2012) Caenorhabditis elegans dosage compensation regulates histone H4 chromatin state on X chromosomes. Mol Cell Biol 32:1710–1719.  https://doi.org/10.1128/MCB.06546-11 Google Scholar
  115. Woodward J, Taylor GC, Soares DC et al (2016) Condensin II mutation causes T-cell lymphoma through tissue-specific genome instability. Genes Dev 30:2173–2186.  https://doi.org/10.1101/gad.284562.116 Google Scholar
  116. Xing H, Wilkerson DC, Mayhew CN et al (2005) Mechanism of hsp70i gene bookmarking. Science 307:421–423.  https://doi.org/10.1126/science.1106478 Google Scholar
  117. Xing H, Vanderford NL, Sarge KD (2008) The TBP-PP2A mitotic complex bookmarks genes by preventing condensin action. Nat Cell Biol 10:1318–1323.  https://doi.org/10.1038/ncb1790 Google Scholar
  118. Xue Y, Acar M (2018) Live-cell imaging of chromatin condensation dynamics by CRISPR. iScience 4:216–235.  https://doi.org/10.1016/j.isci.2018.06.001 Google Scholar
  119. Yuen KC, Gerton JL (2018) Taking cohesin and condensin in context. PLoS Genet 14:e1007118.  https://doi.org/10.1371/journal.pgen.1007118 Google Scholar
  120. Yuen KC, Slaughter BD, Gerton JL (2017) Condensin II is anchored by TFIIIC and H3K4me3 in the mammalian genome and supports the expression of active dense gene clusters. Sci Adv 3:e1700191.  https://doi.org/10.1126/sciadv.1700191 Google Scholar
  121. Zhang T, Paulson JR, Bakhrebah M et al (2016) Condensin I and II behaviour in interphase nuclei and cells undergoing premature chromosome condensation. Chromosom Res 24:243–269.  https://doi.org/10.1007/s10577-016-9519-7 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of BiologyNew York UniversityNew YorkUSA
  2. 2.Center for Genomics and Systems BiologyNew York UniversityNew YorkUSA

Personalised recommendations