Advertisement

Current Genetics

, Volume 65, Issue 2, pp 523–538 | Cite as

Yeast two-hybrid screening reveals a dual function for the histone acetyltransferase GcnE by controlling glutamine synthesis and development in Aspergillus fumigatus

  • Marcel Nossmann
  • Jana M. Boysen
  • Thomas Krüger
  • Claudia C. König
  • Falk HillmannEmail author
  • Thomas MunderEmail author
  • Axel A. BrakhageEmail author
Original Article

Abstract

The acetyltransferase GcnE is part of the SAGA complex which regulates fungal gene expression through acetylation of chromatin. Target genes of the histone acetyltransferase GcnE include those involved in secondary metabolism and asexual development. Here, we show that the absence of GcnE not only abrogated conidiation, but also strongly impeded vegetative growth of hyphae in the human pathogenic fungus Aspergillus fumigatus. A yeast two-hybrid screen using a Saccharomyces cerevisiae strain whose tRNA molecules were specifically adapted to express A. fumigatus proteins identified two unprecedented proteins that directly interact with GcnE. Glutamine synthetase GlnA as well as a hypothetical protein located on chromosome 8 (GbpA) were identified as binding partners of GcnE and their interaction was confirmed in vivo via bimolecular fluorescence complementation. Phenotypic characterization of gbpA and glnA deletion mutants revealed a role for GbpA during conidiogenesis and confirmed the central role of GlnA in glutamine biosynthesis. The increase of glutamine synthetase activity in the absence of GcnE indicated that GcnE silences GlnA through binding. This finding suggests an expansion of the regulatory role of GcnE in A. fumigatus.

Keywords

Aspergillus fumigatus Yeast two-hybrid system Histone acetyltransferase GcnE Glutamine synthetase GlnA Bimolecular fluorescence complementation assay 

Notes

Acknowledgements

Lisa Reimer is acknowledged for excellent technical assistance. This study was supported by the Ernst-Abbe University of Applied Sciences Jena, by the Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute Jena and the collaborative research center/transregio 124 FungiNet (Project A1 and Z2) funded by the Deutsche Forschungsgemeinschaft.

Supplementary material

294_2018_891_MOESM1_ESM.docx (20 kb)
Supplementary material 1 (DOCX 19 KB)
294_2018_891_MOESM2_ESM.docx (1.2 mb)
Supplementary material 2 (DOCX 1179 KB)

References

  1. Altwasser R, Baldin C, Weber J, Guthke R, Kniemeyer O, Brakhage AA, Linde J, Valiante V (2015) Network modeling reveals cross talk of MAP kinases during adaptation to caspofungin stress in Aspergillus fumigatus. PLoS One 10(9):e0136932Google Scholar
  2. Ashok Kumar T (2013) CFSSP: Chou and Fasman secondary structure prediction server. Wide Spectr 1(9):15–19Google Scholar
  3. Ballance DJ, Turner G (1985) Development of a high-frequency transforming vector for Aspergillus nidulans. Gene 36(3):321–331Google Scholar
  4. Bowyer P, Denning DW (2007) Genomic analysis of allergen genes in Aspergillus spp.: the relevance of genomics to everyday research. Med Mycol 45(1):17–26Google Scholar
  5. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254Google Scholar
  6. Brakhage AA, Langfelder K (2002) Menacing mold: the molecular biology of Aspergillus fumigatus. Annu Rev Microbiol 56:433–455Google Scholar
  7. Brakhage AA, Van den Brulle J (1995) Use of reporter genes to identify recessive trans-acting mutations specifically involved in the regulation of Aspergillus nidulans penicillin biosynthesis genes. J Bacteriol 177(10):2781–2788Google Scholar
  8. Breeden L, Nasmyth K (1985) Regulation of the yeast HO gene. Cold Spring Harb Symp Quant Biol 50:643–650Google Scholar
  9. Brown GD, Denning DW, Gow NA, Levitz SM, Netea MG, White TC (2012) Hidden killers: human fungal infections. Sci Transl Med 4(165):165rv113Google Scholar
  10. Canovas D, Marcos AT, Gacek A, Ramos MS, Gutierrez G, Reyes-Dominguez Y, Strauss J (2014) The histone acetyltransferase GcnE (GCN5) plays a central role in the regulation of Aspergillus asexual development. Genetics 197(4):1175–1189Google Scholar
  11. Chang P, Fan X, Chen J (2015) Function and subcellular localization of Gcn5, a histone acetyltransferase in Candida albicans. Fungal Genet Biol 81:132–141Google Scholar
  12. Choudhary C, Weinert BT, Nishida Y, Verdin E, Mann M (2014) The growing landscape of lysine acetylation links metabolism and cell signalling. Nat Rev Mol Cell Biol 15(8):536–550Google Scholar
  13. da Silva Ferreira ME, Kress MR, Savoldi M, Goldman MH, Hartl A, Heinekamp T, Brakhage AA, Goldman GH (2006) The akuB(KU80) mutant deficient for nonhomologous end joining is a powerful tool for analyzing pathogenicity in Aspergillus fumigatus. Eukaryot Cell 5(1):207–211Google Scholar
  14. Daniel JA, Grant PA (2007) Multi-tasking on chromatin with the SAGA coactivator complexes. Mutat Res 618(1–2):135–148Google Scholar
  15. Dastidar RG, Hooda J, Shah A, Cao TM, Henke RM, Zhang L (2012) The nuclear localization of SWI/SNF proteins is subjected to oxygen regulation. Cell Biosci 2(1):30Google Scholar
  16. Dunn-Coleman NS, Garrett RH (1980) The role fo glutamine synthetase and glutamine metabolism in nitrogen metabolite repression, a regulatory phenomenon in the lower eukaryote Neurospora crassa. Mol Gen Genet 179(1):25–32Google Scholar
  17. Dyda F, Klein DC, Hickman AB (2000) GCN5-related N-acetyltransferases: a structural overview. Annu Rev Biophys Biomol Struct 29:81–103Google Scholar
  18. Fedorova ND, Khaldi N, Joardar VS, Maiti R, Amedeo P, Anderson MJ, Crabtree J, Silva JC, Badger JH, Albarraq A, Angiuoli S, Bussey H, Bowyer P, Cotty PJ, Dyer PS, Egan A, Galens K, Fraser-Liggett CM, Haas BJ, Inman JM, Kent R, Lemieux S, Malavazi I, Orvis J, Roemer T, Ronning CM, Sundaram JP, Sutton G, Turner G, Venter JC, White OR, Whitty BR, Youngman P, Wolfe KH, Goldman GH, Wortman JR, Jiang B, Denning DW, Nierman WC (2008) Genomic islands in the pathogenic filamentous fungus Aspergillus fumigatus. PLoS Genet 4(4):e1000046Google Scholar
  19. Fields S, Song O (1989) A novel genetic system to detect protein–protein interactions. Nature 340(6230):245–246Google Scholar
  20. Georgakopoulos P, Lockington RA, Kelly JM (2013) The Spt-Ada-Gcn5 acetyltransferase (SAGA) complex in Aspergillus nidulans. PLoS One 8(6):e65221Google Scholar
  21. Gola S, Munder T, Casonato S, Manganelli R, Vicente M (2015) The essential role of SepF in mycobacterial division. Mol Microbiol 97(3):560–576Google Scholar
  22. Gsaller F, Hortschansky P, Beattie SR, Klammer V, Tuppatsch K, Lechner BE, Rietzschel N, Werner ER, Vogan AA, Chung D, Muhlenhoff U, Kato M, Cramer RA, Brakhage AA, Haas H (2014) The Janus transcription factor HapX controls fungal adaptation to both iron starvation and iron excess. EMBO J 33(19):2261–2276Google Scholar
  23. Hassan AH, Prochasson P, Neely KE, Galasinski SC, Chandy M, Carrozza MJ, Workman JL (2002) Function and selectivity of bromodomains in anchoring chromatin-modifying complexes to promoter nucleosomes. Cell 111(3):369–379Google Scholar
  24. Hillmann F, Bagramyan K, Strassburger M, Heinekamp T, Hong TB, Bzymek KP, Williams JC, Brakhage AA, Kalkum M (2016) The crystal structure of peroxiredoxin Asp f3 provides mechanistic insight into oxidative stress resistance and virulence of Aspergillus fumigatus. Sci Rep 6:33396Google Scholar
  25. Hoff B, Kück U (2005) Use of bimolecular fluorescence complementation to demonstrate transcription factor interaction in nuclei of living cells from the filamentous fungus Acremonium chrysogenum. Curr Genet 47(2):132–138Google Scholar
  26. Jöhnk B, Bayram O, Abelmann A, Heinekamp T, Mattern DJ, Brakhage AA, Jacobsen ID, Valerius O, Braus GH (2016) SCF ubiquitin ligase F-box protein Fbx15 controls nuclear co-repressor localization, stress response and virulence of the human pathogen Aspergillus fumigatus. PLoS Pathog 12(9):e1005899Google Scholar
  27. Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G, Pesseat S, Quinn AF, Sangrador-Vegas A, Scheremetjew M, Yong SY, Lopez R, Hunter S (2014) InterProScan 5: genome-scale protein function classification. Bioinformatics 30(9):1236–1240Google Scholar
  28. Kollath-Leiss K, Bonniger C, Sardar P, Kempken F (2014) BEM46 shows eisosomal localization and association with tryptophan-derived auxin pathway in Neurospora crassa. Eukaryot Cell 13(8):1051–1063Google Scholar
  29. Kornberg A, Pricer WE Jr (1951) Enzymatic phosphorylation of adenosine and 2,6-diaminopurine riboside. J Biol Chem 193(2):481–495Google Scholar
  30. Langfelder K, Jahn B, Gehringer H, Schmidt A, Wanner G, Brakhage AA (1998) Identification of a polyketide synthase gene (pksP) of Aspergillus fumigatus involved in conidial pigment biosynthesis and virulence. Med Microbiol Immunol 187(2):79–89Google Scholar
  31. Latge JP (1999) Aspergillus fumigatus and aspergillosis. Clin Microbiol Rev 12(2):310–350Google Scholar
  32. Lerin C, Rodgers JT, Kalume DE, Kim SH, Pandey A, Puigserver P (2006) GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-1alpha. Cell Metab 3(6):429–438Google Scholar
  33. Linde J, Wilson D, Hube B, Guthke R (2010) Regulatory network modelling of iron acquisition by a fungal pathogen in contact with epithelial cells. BMC Syst Biol 4:148Google Scholar
  34. Lopez J, Mukhtar MS (2017) Mapping protein–protein interaction using high-throughput yeast 2-hybrid. Methods Mol Biol 1610:217–230Google Scholar
  35. Lundby A, Lage K, Weinert BT, Bekker-Jensen DB, Secher A, Skovgaard T, Kelstrup CD, Dmytriyev A, Choudhary C, Lundby C, Olsen JV (2012) Proteomic analysis of lysine acetylation sites in rat tissues reveals organ specificity and subcellular patterns. Cell Rep 2(2):419–431Google Scholar
  36. Magnani Dinamarco T, Brown NA, Couto de Almeida RS, Alves de Castro P, Savoldi M, de Souza Goldman MH, Goldman GH (2012) Aspergillus fumigatus calcineurin interacts with a nucleoside diphosphate kinase. Microb Infect 14(11):922–929Google Scholar
  37. Marchler-Bauer A, Bo Y, Han L, He J, Lanczycki CJ, Lu S, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Lu F, Marchler GH, Song JS, Thanki N, Wang Z, Yamashita RA, Zhang D, Zheng C, Geer LY, Bryant SH (2017) CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res 45(D1):D200–D203Google Scholar
  38. Munder T, Hinnen A (1999) Yeast cells as tools for target-oriented screening. Appl Microbiol Biotechnol 52(3):311–320Google Scholar
  39. Nossmann M, Pieper J, Hillmann F, Brakhage AA, Munder T (2017) Generation of an arginine-tRNA-adapted Saccharomyces cerevisiae strain for effective heterologous protein expression. Curr Genet 64(3):589–598Google Scholar
  40. Novy R, Drott D, Yaeger K, Mierendorf R (2001) Overcoming the codon bias of E. coli for enhanced protein expression. Innovations 12:1–3Google Scholar
  41. Nützmann HW, Fischer J, Scherlach K, Hertweck C, Brakhage AA (2013) Distinct amino acids of histone H3 control secondary metabolism in Aspergillus nidulans. Appl Environ Microbiol 79(19):6102–6109.  https://doi.org/10.1128/AEM.01578-13 Google Scholar
  42. Nützmann HW, Reyes-Dominguez Y, Scherlach K, Schroeckh V, Horn F, Gacek A, Schumann J, Hertweck C, Strauss J, Brakhage AA (2011) Bacteria-induced natural product formation in the fungus Aspergillus nidulans requires Saga/Ada-mediated histone acetylation. Proc Natl Acad Sci USA 108(34):14282–14287Google Scholar
  43. O’Meara TR, Hay C, Price MS, Giles S, Alspaugh JA (2010) Cryptococcus neoformans histone acetyltransferase Gcn5 regulates fungal adaptation to the host. Eukaryot Cell 9(8):1193–1202Google Scholar
  44. Paolinelli R, Mendoza-Maldonado R, Cereseto A, Giacca M (2009) Acetylation by GCN5 regulates CDC6 phosphorylation in the S phase of the cell cycle. Nat Struct Mol Biol 16(4):412–420Google Scholar
  45. Pray-Grant MG, Schieltz D, McMahon SJ, Wood JM, Kennedy EL, Cook RG, Workman JL, Yates JR III, Grant PA (2002) The novel SLIK histone acetyltransferase complex functions in the yeast retrograde response pathway. Mol Cell Biol 22(24):8774–8786Google Scholar
  46. Quan J, Tian J (2009) Circular polymerase extension cloning of complex gene libraries and pathways. PLoS One 4(7):e6441Google Scholar
  47. Rice P, Longden I, Bleasby A (2000) EMBOSS: the European molecular biology open software suite. Trends Genet TIG 16(6):276–277Google Scholar
  48. Rösler SM, Kramer K, Finkemeier I, Humpf HU, Tudzynski B (2016) The SAGA complex in the rice pathogen Fusarium fujikuroi: structure and functional characterization. Mol Microbiol 102(6):951–974Google Scholar
  49. Salah Ud-Din AI, Tikhomirova A, Roujeinikova A (2016) Structure and functional diversity of GCN5-related N-acetyltransferases (GNAT). Int J Mol Sci 17(7):1018Google Scholar
  50. Samara NL, Wolberger C (2011) A new chapter in the transcription SAGA. Curr Opin Struct Biol 21(6):767–774Google Scholar
  51. Sarikaya Bayram Ö, Latgé JP, Bayram Ö (2018) MybA, a new player driving survival of the conidium of the human pathogen Aspergillus fumigatus. Curr Genet 64(1):141–146.  https://doi.org/10.1007/s00294-017-0740-5 Google Scholar
  52. Sellam A, Askew C, Epp E, Lavoie H, Whiteway M, Nantel A (2009) Genome-wide mapping of the coactivator Ada2p yields insight into the functional roles of SAGA/ADA complex in Candida albicans. Mol Biol Cell 20(9):2389–2400Google Scholar
  53. Serebriiskii I, Estojak J, Berman M, Golemis EA (2000) Approaches to detecting false positives in yeast two-hybrid systems. Biotechniques 28(2):328–330, 332–326Google Scholar
  54. Soufi B, Soares NC, Ravikumar V, Macek B (2012) Proteomics reveals evidence of cross-talk between protein modifications in bacteria: focus on acetylation and phosphorylation. Curr Opin Microbiol 15(3):357–363Google Scholar
  55. Stajich JE, Harris T, Brunk BP, Brestelli J, Fischer S, Harb OS, Kissinger JC, Li W, Nayak V, Pinney DF, Stoeckert CJ Jr, Roos DS (2012) FungiDB: an integrated functional genomics database for fungi. Nucleic Acids Res 40(Database issue):D675–D681Google Scholar
  56. Tate JJ, Rai R, Cooper TG (2018) More than one way in: three Gln3 sequences required to telieve negative Ure2 regulation and support nuclear Gln3 import in Saccharomyces cerevisiae. Genetics 208(1):207–227Google Scholar
  57. Teichert S, Schonig B, Richter S, Tudzynski B (2004) Deletion of the Gibberella fujikuroi glutamine synthetase gene has significant impact on transcriptional control of primary and secondary metabolism. Mol Microbiol 53(6):1661–1675Google Scholar
  58. Thon M, Al Abdallah Q, Hortschansky P, Scharf DH, Eisendle M, Haas H, Brakhage AA (2010) The CCAAT-binding complex coordinates the oxidative stress response in eukaryotes. Nucleic Acids Res 38(4):1098–1113Google Scholar
  59. Vo TV, Das J, Meyer MJ, Cordero NA, Akturk N, Wei X, Fair BJ, Degatano AG, Fragoza R, Liu LG, Matsuyama A, Trickey M, Horibata S, Grimson A, Yamano H, Yoshida M, Roth FP, Pleiss JA, Xia Y, Yu H (2016) A proteome-wide fission yeast interactome reveals network evolution principles from yeasts to human. Cell 164(1–2):310–323Google Scholar
  60. Wagner D, Wiemann P, Huss K, Brandt U, Fleissner A, Tudzynski B (2013) A sensing role of the glutamine synthetase in the nitrogen regulation network in Fusarium fujikuroi. PLoS One 8(11):e80740Google Scholar
  61. Wang Q, Zhang Y, Yang C, Xiong H, Lin Y, Yao J, Li H, Xie L, Zhao W, Yao Y, Ning ZB, Zeng R, Xiong Y, Guan KL, Zhao S, Zhao GP (2010) Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. Science 327(5968):1004–1007Google Scholar
  62. Wessel D, Flügge UI (1984) A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem 138(1):141–143Google Scholar
  63. Wiemann P, Guo CJ, Palmer JM, Sekonyela R, Wang CC, Keller NP (2013) Prototype of an intertwined secondary-metabolite supercluster. Proc Natl Acad Sci USA 110(42):17065–17070Google Scholar
  64. You D, Yin BC, Li ZH, Zhou Y, Yu WB, Zuo P, Ye BC (2016) Sirtuin-dependent reversible lysine acetylation of glutamine synthetases reveals an autofeedback loop in nitrogen metabolism. Proc Natl Acad Sci USA 113(24):6653–6658Google Scholar
  65. Yu H, Braun P, Yildirim MA, Lemmens I, Venkatesan K, Sahalie J, Hirozane-Kishikawa T, Gebreab F, Li N, Simonis N, Hao T, Rual JF, Dricot A, Vazquez A, Murray RR, Simon C, Tardivo L, Tam S, Svrzikapa N, Fan C, de Smet AS, Motyl A, Hudson ME, Park J, Xin X, Cusick ME, Moore T, Boone C, Snyder M, Roth FP, Barabasi AL, Tavernier J, Hill DE, Vidal M (2008) High-quality binary protein interaction map of the yeast interactome network. Science 322(5898):104–110Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Medical Engineering and Biotechnology, Ernst-Abbe-Hochschule JenaUniversity of Applied SciencesJenaGermany
  2. 2.Department of Molecular and Applied MicrobiologyLeibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI)JenaGermany
  3. 3.Institute of MicrobiologyFriedrich Schiller University JenaJenaGermany
  4. 4.Junior Research Group Evolution of Microbial InteractionsLeibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI)JenaGermany

Personalised recommendations