Advertisement

Current Genetics

, Volume 64, Issue 5, pp 1015–1019 | Cite as

The conserved histone variant H2A.Z illuminates meiotic recombination initiation

  • Shintaro Yamada
  • Kazuto Kugou
  • Da-Qiao Ding
  • Yurika Fujita
  • Yasushi Hiraoka
  • Hiroshi Murakami
  • Kunihiro Ohta
  • Takatomi Yamada
Review

Abstract

Meiotic recombination ensures faithful chromosome segregation and confers genetic diversity to gametes, and thus, is a key DNA-templated reaction not only for sexual reproduction, but also evolution. This recombination is initiated by programmed DNA double strand breaks (DSBs), which are mainly formed at recombination hotspots. As meiotic DSB formation requires multiple proteins, it is regulated by chromatin structure. In particular, DSB occurs in a higher-order chromatin architecture termed “axis-loop”, in which many loops protrude from proteinaceous axis. Previous studies have suggested that assembly of this structure is dependent on chromatin binding of cohesin, which in turn recruits proteins implicated in DSB formation. However, roles of chromatin in meiotic DSB formation are not fully characterized. This review article summarizes our recent report showing that the conserved histone H2A variant H2A.Z promotes meiotic DSB formation in fission yeast. Through a series of experiments, we found that, in H2A.Z-lacking mutants, multiple proteins involved in DSB formation, but not cohesin subunits, are less associated with chromatin. Strikingly, nuclei were more compact in the absence of H2A.Z. These observations led us to propose that fission yeast H2A.Z promotes meiotic DSB formation partly through modulating chromosome architecture to enhance interaction between DSB-related proteins and cohesin-loaded chromatin. In addition, biological implications of our findings are discussed, and their relevance to DSB formation in other species as well as to other DNA-related events are also provided.

Keywords

Meiosis Chromatin DNA double strand break (DSB) Histone H2A.Z 

Notes

Acknowledgements

We regret that much of the relevant work could not be cited due to space limitations.

References

  1. Bell O, Tiwari VK, Thoma NH, Schubeler D (2011) Determinants and dynamics of genome accessibility. Nat Rev Genet 12(8):554–564.  https://doi.org/10.1038/nrg3017 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bonisch C, Hake SB (2012) Histone H2A variants in nucleosomes and chromatin: more or less stable? Nucleic Acids Res 40(21):10719–10741.  https://doi.org/10.1093/nar/gks865 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Borde V, de Massy B (2013) Programmed induction of DNA double strand breaks during meiosis: setting up communication between DNA and the chromosome structure. Curr Opin Genet Dev 23(2):147–155.  https://doi.org/10.1016/j.gde.2012.12.002 pii]CrossRefPubMedPubMedCentralGoogle Scholar
  4. Challa K, Lee MS, Shinohara M, Kim KP, Shinohara A (2016) Rad61/Wpl1 (Wapl), a cohesin regulator, controls chromosome compaction during meiosis. Nucleic Acids Res 44(7):3190–3203.  https://doi.org/10.1093/nar/gkw034 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Choi K, Zhao X, Kelly KA, Venn O, Higgins JD, Yelina NE, Hardcastle TJ, Ziolkowski PA, Copenhaver GP, Franklin FC, McVean G, Henderson IR (2013) Arabidopsis meiotic crossover hot spots overlap with H2A.Z nucleosomes at gene promoters. Nat Genet 45(11):1327–1336.  https://doi.org/10.1038/ng.2766 CrossRefPubMedPubMedCentralGoogle Scholar
  6. de Massy B (2013) Initiation of meiotic recombination: how and where? Conservation and specificities among eukaryotes. Annu Rev Genet 47:563–599.  https://doi.org/10.1146/annurev-genet-110711-155423 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Ding DQ, Sakurai N, Katou Y, Itoh T, Shirahige K, Haraguchi T, Hiraoka Y (2006) Meiotic cohesins modulate chromosome compaction during meiotic prophase in fission yeast. J Cell Biol 174(4):499–508.  https://doi.org/10.1083/jcb.200605074 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Ding DQ, Haraguchi T, Hiraoka Y (2016) A cohesin-based structural platform supporting homologous chromosome pairing in meiosis. Curr Genet 62(3):499–502.  https://doi.org/10.1007/s00294-016-0570-x CrossRefPubMedPubMedCentralGoogle Scholar
  9. Ellermeier C, Smith GR (2005) Cohesins are required for meiotic DNA breakage and recombination in Schizosaccharomyces pombe. Proc Natl Acad Sci USA 102(31):10952–10957.  https://doi.org/10.1073/pnas.0504805102 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Fan JY, Gordon F, Luger K, Hansen JC, Tremethick DJ (2002) The essential histone variant H2A.Z regulates the equilibrium between different chromatin conformational states. Nat Struct Biol 9(3):172–176.  https://doi.org/10.1038/nsb767 CrossRefGoogle Scholar
  11. Fan JY, Rangasamy D, Luger K, Tremethick DJ (2004) H2A.Z alters the nucleosome surface to promote HP1 alpha-mediated chromatin fiber folding. Mol Cell 16(4):655–661.  https://doi.org/10.1016/j.molcel.2004.10.023 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Hunter N (2015) Meiotic recombination: the essence of heredity. Cold Spring Harb Perspect Biol.  https://doi.org/10.1101/cshperspect.a016618 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Keeney S, Lange J, Mohibullah N (2014) Self-organization of meiotic recombination initiation: general principles and molecular pathways. Annu Rev Genet 48:187–214.  https://doi.org/10.1146/annurev-genet-120213-092304 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Kim HS, Vanoosthuyse V, Fillingham J, Roguev A, Watt S, Kislinger T, Treyer A, Carpenter LR, Bennett CS, Emili A, Greenblatt JF, Hardwick KG, Krogan NJ, Bahler J, Keogh MC (2009) An acetylated form of histone H2A.Z regulates chromosome architecture in Schizosaccharomyces pombe. Nat Struct Mol Biol 16(12):1286–1293.  https://doi.org/10.1038/nsmb.1688 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Lam I, Keeney S (2015) Mechanism and regulation of meiotic recombination initiation. Cold Spring Harb Perspect Biol 7(1):a016634.  https://doi.org/10.1101/cshperspect.a016634 CrossRefGoogle Scholar
  16. Lin YK, Smith GR (1995) An intron-containing meiosis-induced recombination gene, Rec15, of Schizosaccharomyces pombe. Mol Microbiol 17(3):439–448.  https://doi.org/10.1111/j.1365-2958.1995.mmi_17030439.x CrossRefPubMedPubMedCentralGoogle Scholar
  17. Loidl J (2006) S. pombe linear elements: the modest cousins of synaptonemal complexes. Chromosoma 115(3):260–271.  https://doi.org/10.1007/s00412-006-0047-7 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Lorenz A, Wells JL, Pryce DW, Novatchkova M, Eisenhaber F, McFarlane RJ, Loidl J (2004) S. pombe meiotic linear elements contain proteins related to synaptonemal complex components. J Cell Sci 117(15):3343–3351.  https://doi.org/10.1242/jcs.01203 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Lorenz A, Estreicher A, Kohli J, Loidl J (2006) Meiotic recombination proteins localize to linear elements in Schizosaccharomyces pombe. Chromosoma 115(4):330–340.  https://doi.org/10.1007/s00412-006-0053-9 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Miyoshi T, Ito M, Kugou K, Yamada S, Furuichi M, Oda A, Yamada T, Hirota K, Masai H, Ohta K (2012) A central coupler for recombination initiation linking chromosome architecture to S phase checkpoint. Mol Cell 47(5):722–733.  https://doi.org/10.1016/j.molcel.2012.06.023 pii]CrossRefPubMedPubMedCentralGoogle Scholar
  21. Phadnis N, Cipak L, Polakova S, Hyppa RW, Cipakova I, Anrather D, Karvaiova L, Mechtler K, Smith GR, Gregan J (2015) Casein kinase 1 and phosphorylation of cohesin subunit Rec11 (SA3) promote meiotic recombination through linear element formation. PLoS Genet 11(5):e1005225.  https://doi.org/10.1371/journal.pgen.1005225 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Qin Y, Zhao L, Skaggs MI, Andreuzza S, Tsukamoto T, Panoli A, Wallace KN, Smith S, Siddiqi I, Yang Z, Yadegari R, Palanivelu R (2014) ACTIN-RELATED PROTEIN6 regulates female meiosis by modulating meiotic gene expression in Arabidopsis. Plant Cell 26(4):1612–1628.  https://doi.org/10.1105/tpc.113.120576 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Rosa M, Von Harder M, Cigliano RA, Schlogelhofer P, Mittelsten Scheid O (2013) The Arabidopsis SWR1 chromatin-remodeling complex is important for DNA repair, somatic recombination, and meiosis. Plant Cell 25(6):1990–2001.  https://doi.org/10.1105/tpc.112.104067 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Ruan K, Yamamoto TG, Asakawa H, Chikashige Y, Kimura H, Masukata H, Haraguchi T, Hiraoka Y (2015) Histone H4 acetylation required for chromatin decompaction during DNA replication. Sci Rep 5:12720.  https://doi.org/10.1038/srep12720 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Sakuno T, Watanabe Y (2015) Phosphorylation of cohesin Rec11/SA3 by casein kinase 1 promotes homologous recombination by assembling the meiotic chromosome axis. Dev Cell 32(2):220–230.  https://doi.org/10.1016/j.devcel.2014.11.033 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Shogren-Knaak M, Ishii H, Sun JM, Pazin MJ, Davie JR, Peterson CL (2006) Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 311(5762):844–847.  https://doi.org/10.1126/science.1124000 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Wood TJ, Thistlethwaite A, Harris MR, Lovell SC, Millar CB (2013) Mutations in non-acid patch residues disrupt H2A.Z’s association with chromatin through multiple mechanisms. Plos One 8(10):e76394.  https://doi.org/10.1371/journal.pone.0076394 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Yamada T, Ohta K (2013) Initiation of meiotic recombination in chromatin structure. J Biochem 154(2):107–114.  https://doi.org/10.1093/jb/mvt054 pii]CrossRefPubMedPubMedCentralGoogle Scholar
  29. Yamada T, Mizuno K, Hirota K, Kon N, Wahls WP, Hartsuiker E, Murofushi H, Shibata T, Ohta K (2004) Roles of histone acetylation and chromatin remodeling factor in a meiotic recombination hotspot. EMBO J 23(8):1792–1803CrossRefPubMedCentralGoogle Scholar
  30. Yamada S, Ohta K, Yamada T (2013) Acetylated histone H3K9 is associated with meiotic recombination hotspots, and plays a role in recombination redundantly with other factors including the H3K4 methylase Set1 in fission yeast. Nucleic Acids Res 41(6):3504–3517.  https://doi.org/10.1093/nar/gkt049 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Yamada S, Okamura M, Oda A, Murakami H, Ohta K, Yamada T (2017) Correlation of meiotic DSB formation and transcription initiation around fission yeast recombination hotspots. Genetics 206(2):801–809.  https://doi.org/10.1534/genetics.116.197954 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Yamada S, Kugou K, Ding DQ, Fujita Y, Hiraoka Y, Murakami H, Ohta K, Yamada T (2018) The histone variant H2A.Z promotes initiation of meiotic recombination in fission yeast. Nucleic Acids Res 46(2):609–620.  https://doi.org/10.1093/nar/gkx1110 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Shintaro Yamada
    • 1
    • 5
  • Kazuto Kugou
    • 1
    • 6
  • Da-Qiao Ding
    • 3
  • Yurika Fujita
    • 1
  • Yasushi Hiraoka
    • 3
    • 4
  • Hiroshi Murakami
    • 2
  • Kunihiro Ohta
    • 1
  • Takatomi Yamada
    • 2
  1. 1.Department of Life Sciences, Graduate School of Arts and SciencesThe University of TokyoTokyoJapan
  2. 2.Department of Biological Sciences, Faculty of Science and EngineeringChuo UniversityTokyoJapan
  3. 3.Advanced ICT Research Institute Kobe, National Institute of Information and Communications TechnologyKobeJapan
  4. 4.Graduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
  5. 5.Memorial Sloan Kettering Cancer CenterNew YorkUSA
  6. 6.Kazusa DNA Research InstituteChibaJapan

Personalised recommendations