Current Genetics

, Volume 64, Issue 5, pp 1071–1087 | Cite as

Cell size is regulated by phospholipids and not by storage lipids in Saccharomyces cerevisiae

  • Monala Jayaprakash Rao
  • Malathi Srinivasan
  • Ram RajasekharanEmail author
Original Article


Cell size and morphology are key adaptive features that influence almost all aspects of cellular physiology such as cell cycle and lipid metabolism. Here we report the role of a transcription factor Suppressor Phenotype of Ty elements insertion 10 (SPT10) of Saccharomyces cerevisiae in regulating cell cycle, cell size and lipid metabolism in concert, in addition to its defined role of histone gene expression. Morphological and biochemical analyses of spt10Δ strain show an abnormal cell size, cell cycle and lipid levels. The expression of Spt10p in spt10Δ strain helps the cell revert to typical wild-type phenotypes. SPT10 controls lipid metabolism by negatively regulating the expression of lipid biosynthetic genes, and positively regulating the expression of the lipid hydrolyzing genes. Spt10p helps in maintaining the cell size by regulating the amount of carbon flux into the phospholipid constituents of the cell membranes. On the contrary, storage lipids have no role in regulating the cell size. An exogenous supply of phosphatidic acid increases the cell size, proving the positive impact of the phospholipids on cell size modulation. SPT10 affects cell cycle, cell size and lipid metabolism by an orchestrated transcriptional regulation of the corresponding genes.


SPT10 Phosphatidic acid Phosphatidylcholine Phosphatidylethanolamine Cell size Lipid metabolism H1246 RH1246 



This study was supported by the Council of Scientific and Industrial Research (CSIR), New Delhi, under the 12th 5-year plan project LIPIC (BSC0401). M. Jayaprakash Rao was supported by a fellowship from CSIR, New Delhi. The corresponding author is a recipient of the JC Bose national fellowship. We are grateful to the Department of Biochemistry, Indian Institute of Science, and C-CAMP, Bangalore for help with the radioactive study and Cell sorting facility, respectively.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

294_2018_821_MOESM1_ESM.docx (871 kb)
Supplementary material 1 (DOCX 871 KB)


  1. Anastasia SD, Nguyen DL, Thai V, Meloy M, MacDonough T, Kellogg DR (2012) A link between mitotic entry and membrane growth suggests a novel model for cell size control. J Cell Biol 197:89–104CrossRefPubMedCentralGoogle Scholar
  2. Athenstaedt K, Daum G (2006) The life cycle of neutral lipids: synthesis, storage and degradation. Cell Mol Life Sci 63:1355–1369CrossRefPubMedCentralGoogle Scholar
  3. Benghezal M, Roubaty C, Veepuri V, Knudsen J, Conzelmann A (2007) SLC1 and SLC4 encode partially redundant acyl-coenzyme A 1-acylglycerol-3-phosphate O-acyltransferases of budding yeast. J Biol Chem 282(42):30845–30855CrossRefPubMedCentralGoogle Scholar
  4. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917CrossRefGoogle Scholar
  5. Carman GM, Han GS (2007) Regulation of phospholipid synthesis in Saccharomyces cerevisiae by zinc depletion. Biochim Biophys Acta 1771:322–330CrossRefPubMedCentralGoogle Scholar
  6. Carman GM, Henry SA (2007) Phosphatidic acid plays a central role in the transcriptional regulation of glycerophospholipid synthesis in Saccharomyces cerevisiae. J Biol Chem 282:37293–37297CrossRefPubMedCentralGoogle Scholar
  7. Chang JS, Winston F (2013) Cell-cycle perturbations suppress the slow-growth defect of spt10Delta mutants in Saccharomyces cerevisiae. G3-Genes Genom Genet (Bethesda, MD) 3:573–583Google Scholar
  8. Chauhan N, Visram M, Cristobal-Sarramian A, Sarkleti F, Kohlwein SD (2015) Morphogenesis checkpoint kinase Swe1 is the executor of lipolysis-dependent cell-cycle progression. Proc Natl Acad Sci USA 112(10):E1077–E1085CrossRefPubMedCentralGoogle Scholar
  9. Dollard C, Ricupero-Hovasse SL, Natsoulis G, Boeke JD, Winston F (1994) SPT10 and SPT21 are required for transcription of particular histone genes in Saccharomyces cerevisiae. Mol Cell Biol 14:5223–5228CrossRefPubMedCentralGoogle Scholar
  10. Eriksson PR, Mendiratta G, McLaughlin NB, Wolfsberg TG, Marino-Ramirez L, Pompa TA, Jainerin M, Landsman D, Shen CH, Clark DJ (2005) Global regulation by the yeast Spt10 protein is mediated through chromatin structure and the histone upstream activating sequence elements. Mol Cell Biol 25:9127–9137CrossRefPubMedCentralGoogle Scholar
  11. Eriksson PR, Ganguli D, Nagarajavel V, Clark DJ (2012) Regulation of histone gene expression in budding yeast. Genetics 191:7–20CrossRefPubMedCentralGoogle Scholar
  12. Fraser T, Gilmour A (1986) Scanning electron microscopy preparation methods: their influence on the morphology and fibril formation in Pseudomonas fragi (ATCC 4973). J Appl Microbiol 60:527–533Google Scholar
  13. Gietz RD, Schiestl RH, Willems AR, Woods RA (1995) Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11:355–360CrossRefPubMedCentralGoogle Scholar
  14. Gupta I, Villanyi Z, Kassem S, Hughes C, Panasenko OO, Steinmetz LM, Collart MA (2016) Translational capacity of a cell is determined during transcription elongation via the Ccr4-not complex. Cell Rep 15:1782–1794CrossRefPubMedCentralGoogle Scholar
  15. Hess D, Liu B, Roan NR, Sternglanz R, Winston F (2004) Spt10-dependent transcriptional activation in Saccharomyces cerevisiae requires both the Spt10 acetyltransferase domain and Spt21. Mol Cell Biol 24:135–143CrossRefPubMedCentralGoogle Scholar
  16. Jorgensen P, Nishikawa JL, Breitkreutz BJ, Tyers M (2002) Systematic identification of pathways that couple cell growth and division in yeast. Science 297:395–400CrossRefPubMedCentralGoogle Scholar
  17. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408CrossRefPubMedCentralGoogle Scholar
  18. Marty AJ, Broman AT, Zarnowski R, Dwyer TG, Bond LM, Lounes-Hadj Sahraoui A, Fontaine J, Ntambi JM, Keles S, Kendziorski C et al. (2015). Fungal morphology, iron homeostasis, and lipid metabolism regulated by a GATA transcription factor in Blastomyces dermatitidis. PLOS Pathog 11:e1004959CrossRefPubMedCentralGoogle Scholar
  19. Mendiratta G, Eriksson PR, Shen CH, Clark DJ (2006) The DNA-binding domain of the yeast Spt10p activator includes a zinc finger that is homologous to foamy virus integrase. J Biol Chem 281:7040–7048CrossRefPubMedCentralGoogle Scholar
  20. Mendiratta G, Eriksson PR, Clark DJ (2007) Cooperative binding of the yeast Spt10p activator to the histone upstream activating sequences is mediated through an N-terminal dimerization domain. Nucleic Acids Res 35:812–821CrossRefPubMedCentralGoogle Scholar
  21. Menezes RA, Pimentel C, Silva AR, Amaral C, Merhej J, Devaux F, Rodrigues-Pousada C (2017) Mediator, SWI/SNF and SAGA complexes regulate Yap8-dependent transcriptional activation of ACR2 in response to arsenate. Biochim Biophys Acta 1860:472–481CrossRefPubMedCentralGoogle Scholar
  22. Moir RD, Gross DA, Silver DL, Willis IM (2012) SCS3 and YFT2 link transcription of phospholipid biosynthetic genes to ER stress and the UPR. Plos Genet 8:e1002890CrossRefPubMedCentralGoogle Scholar
  23. Paar M, Jungst C, Steiner NA, Magnes C, Sinner F, Kolb D, Lass A, Zimmermann R, Zumbusch A, Kohlwein SD et al (2012) Remodeling of lipid droplets during lipolysis and growth in adipocytes. J Biol Chem 287:11164–11173CrossRefPubMedCentralGoogle Scholar
  24. Qiu Y, Fakas S, Han GS, Barbosa AD, Siniossoglou S, Carman GM (2013) Transcription factor Reb1p regulates DGK1-encoded diacylglycerol kinase and lipid metabolism in Saccharomyces cerevisiae. J Biol Chem 288:29124–29133CrossRefPubMedCentralGoogle Scholar
  25. Rajvanshi PK, Arya M, Rajasekharan R (2017) The stress-regulatory transcription factors Msn2 and Msn4 regulate fatty acid oxidation in budding yeast. J Biol Chem 292(45):18628–18643CrossRefPubMedCentralGoogle Scholar
  26. Rothstein R (1991) Targeting, disruption, replacement, and allele rescue: integrative DNA transformation in yeast. Method Enzymol 194:281–301CrossRefGoogle Scholar
  27. Sandager L, Gustavsson MH, Stahl U, Dahlqvist A, Wiberg E, Banas A, Lenman M, Ronne H, Stymne S (2002) Storage lipid synthesis is non-essential in yeast. J Biol Chem 277:6478–6482CrossRefPubMedCentralGoogle Scholar
  28. Santiago TC, Mamoun CB (2003) Genome expression analysis in yeast reveals novel transcriptional regulation by inositol and choline and new regulatory functions for Opi1p, Ino2p, and Ino4p. J Biol Chem 278:38723–38730CrossRefPubMedCentralGoogle Scholar
  29. Schwank S, Ebbert R, Rautenstrauss K, Schweizer E, Schuller HJ (1995) Yeast transcriptional activator INO2 interacts as an Ino2p/Ino4p basic helix-loop-helix heteromeric complex with the inositol/choline-responsive element necessary for expression of phospholipid biosynthetic genes in Saccharomyces cerevisiae. Nucleic Acids Res 23:230–237CrossRefPubMedCentralGoogle Scholar
  30. Schwob E, Nasmyth K (1993) CLB5 and CLB6, a new pair of B cyclins involved in DNA replication in Saccharomyces cerevisiae. Genes Dev 7:1160–1175CrossRefPubMedCentralGoogle Scholar
  31. Sorger D, Daum G (2003) Triacylglycerol biosynthesis in yeast. Appl Microbiol Biotechnol 61:289–299CrossRefPubMedCentralGoogle Scholar
  32. Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, Brown PO, Botstein D, Futcher B (1998) Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 9:3273–3297CrossRefPubMedCentralGoogle Scholar
  33. Surana U, Robitsch H, Price C, Schuster T, Fitch I, Futcher AB, Nasmyth K (1991). The role of CDC28 and cyclins during mitosis in the budding yeast S. cerevisiae. Cell 65:145–161CrossRefPubMedCentralGoogle Scholar
  34. Szymanski KM, Binns D, Bartz R, Grishin NV, Li WP, Agarwal AK, Garg A, Anderson RG, Goodman JM (2007) The lipodystrophy protein seipin is found at endoplasmic reticulum lipid droplet junctions and is important for droplet morphology. Proc Natl Acad Sci USA 104:20890–20895CrossRefPubMedCentralGoogle Scholar
  35. Tzur A, Moore JK, Jorgensen P, Shapiro HM, Kirschner MW (2011) Optimizing optical flow cytometry for cell volume-based sorting and analysis. Plos One 6:e16053CrossRefPubMedCentralGoogle Scholar
  36. Vadia S, Tse JL, Lucena R, Yang Z, Kellogg DR, Wang JD, Levin PA (2017) Fatty acid availability sets cell envelope capacity and dictates microbial cell size. Curr Biol 27:1757–1767.e1755CrossRefPubMedCentralGoogle Scholar
  37. Vecsler M, Lazar I, Tzur A (2013). Using standard optical flow cytometry for synchronizing proliferating cells in the G1 phase. PLOS One 8:e83935CrossRefPubMedCentralGoogle Scholar
  38. Weisman LS, Bacallao R, Wickner W (1987) Multiple methods of visualizing the yeast vacuole permit evaluation of its morphology and inheritance during the cell cycle. J Cell Biol 105:1539–1547CrossRefGoogle Scholar
  39. Yadav PK, Rajasekharan R (2016) Misregulation of a DDHD Domain-containing lipase causes mitochondrial dysfunction in yeast. J Biol Chem 291(35):18562–18581CrossRefPubMedCentralGoogle Scholar
  40. Yadav KK, Singh N, Rajasekharan R (2015) PHO4 transcription factor regulates triacylglycerol metabolism under low-phosphate conditions in Saccharomyces cerevisiae. Mol Microbiol 98:456–472CrossRefPubMedCentralGoogle Scholar
  41. Zhang J, Schneider C, Ottmers L, Rodriguez R, Day A, Markwardt J, Schneider BL (2002) Genomic scale mutant hunt identifies cell size homeostasis genes in S. cerevisiae. Curr Biol 12:1992–2001CrossRefPubMedCentralGoogle Scholar
  42. Zheng Z, Zou J (2001) The initial step of the glycerolipid pathway: identification of glycerol 3-phosphate/dihydroxyacetone phosphate dual substrate acyltransferases in Saccharomyces cerevisiae. J Biol Chem 276(45):41710–41716CrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Lipid Science, Lipidomics CenterCSIR-Central Food Technological Research InstituteMysoreIndia
  2. 2.Academy of Scientific and Innovative ResearchCSIR-Central Food Technological Research InstituteMysoreIndia

Personalised recommendations