Advertisement

Current Genetics

, Volume 64, Issue 5, pp 1057–1069 | Cite as

Aquaporin1 regulates development, secondary metabolism and stress responses in Fusarium graminearum

  • Mingyu Ding
  • Jing Li
  • Xinyue Fan
  • Fang He
  • Xiaoyang Yu
  • Lei Chen
  • Shenshen Zou
  • Yuancun Liang
  • Jinfeng Yu
Original Article
  • 296 Downloads

Abstract

The Ascomycete fungus Fusarium graminearum, the causal agent of Fusarium head blight of wheat and barley, has become a predominant model organism for the study of fungal phytopathogens. Aquaporins (AQPs) have been implicated in the transport of water, glycerol, and a variety of other small molecules in yeast, plants and animals. However, the role of these proteins in phytopathogenic fungi is not well understood. Here, we identified and attempted to elucidate the function of the five aquaporin genes in F. graminearum. The phylogenetic analysis revealed that FgAQPs are divided into two clades, with FgAQP1 in the first clade. The ∆AQP1 mutant formed whitish colonies with longer aerial hyphae and reduced conidiation and perithecium formation. The ∆AQP1 mutant conidia were morphologically abnormal and appeared to undergo abnormal germination. The ∆AQP1 mutant and the wild type strain were equally pathogenic, while the mutant produced significantly higher quantities of deoxynivalenol (DON). The ∆AQP1 mutant also exhibited increased resistance to osmotic and oxidative stress as well as cell-wall perturbing agents. Using FgAQP1-GFP and DAPI staining, we found that FgAQP1 is localized to the nuclear membrane in conidia. Importantly, deletion of FgAQP1 increased the severity of conidium autophagy. Taken together, these results suggest that FgAQP1 is involved in hyphal development, stress responses, secondary metabolism, and sexual and asexual reproduction in F. graminearum. Unlike the ∆AQP1 mutant, the ∆AQP2, ∆AQP3, ∆AQP4 and ∆AQP5 mutants had no variable phenotypes.

Keywords

Aquaporin Fusarium graminearum Autophagy Conidial germination Deoxynivalenol Stress responses 

Notes

Acknowledgements

We thank Larry Dunkle (Emeritus Professor, Purdue University, USA) for improving this manuscript. This work was supported by the National Natural Science Foundation of China (31171806), the Natural Science Foundation of Shandong Province (ZR2017MC020), the Wheat Innovation Team of Shandong Province Modern Agricultural Industry Technology System (SDAIT-01-09), and Funds of Shandong “Double Tops” Program (SYL2017XTTD11).

Supplementary material

294_2018_818_MOESM1_ESM.docx (796 kb)
Supplementary material 1 (DOCX 795 KB)

References

  1. Ahmadpour D, Geijer C, Tamás MJ, Lindkvist-Petersson K, Hohmann S (2014) Yeast reveals unexpected roles and regulatory features of aquaporins and aquaglyceroporins. BBA Gen Subj 1840:1482–1491.  https://doi.org/10.1016/j.bbagen.2013.09.027 CrossRefGoogle Scholar
  2. Alexander NJ, Proctor RH, McCormick SP (2009) Genes, gene clusters, and biosynthesis of trichothecenes and fumonisins in Fusarium. Toxin Rev 28:198–215.  https://doi.org/10.1080/15569540903092142 CrossRefGoogle Scholar
  3. An T, Dijck PV, Dumortier F, Teunissen A, Hohmann S, Thevelein JM (2002) Aquaporin expression correlates with freeze tolerance in baker’s yeast, and overexpression improves freeze tolerance in industrial strains. Appl Environ Microbiol 68:5981–5989.  https://doi.org/10.1128/AEM CrossRefGoogle Scholar
  4. An B, Li B, Li H, Zhang Z, Qin G, Tian S (2016) Aquaporin8 regulates cellular development and reactive oxygen species production, a critical component of virulence in Botrytis cinerea. New Phytol 209:1668–1680.  https://doi.org/10.1111/nph.13721 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bienert GP, Møller AL, Kristiansen KA, Schulz A, Møller IM, Schjoerring JK, Jnhn TP (2007) Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J Biol Chem 282:1183–1192.  https://doi.org/10.1074/jbc.M603761200 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bonhivers M, Carbrey JM, Gould SJ, Agre P (1998) Aquaporins in Saccharomyces. Genetic and functional distinctions between laboratory and wild-type strains. J Biol Chem 273:27565–27572.  https://doi.org/10.1074/jbc.273.42.27565 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bowden RL, Leslie JF (1999) Sexual recombination in Gibberella zeae. Phytopathology 89:182–188.  https://doi.org/10.1094/PHYTO.1999.89.2.182 CrossRefGoogle Scholar
  8. Brown DW, Dyer RB, Mccormick SP, Kendra DF, Plattner RD (2004) Functional demarcation of the Fusarium core trichothecene gene cluster. Fungal Genet Biol 41:454–462.  https://doi.org/10.1016/j.fgb.2003.12.002 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bruno KS, Tenjo F, Li L, Hamer JE, Xu JR (2004) Cellular localization and role of kinase activity of PMK1 in Magnaporthe grisea. Eukaryot Cell 3:1525–1532.  https://doi.org/10.1128/EC.3.6.1525-1532.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Carbrey JM, Bonhivers M, Boeke JD, Agre P (2001) Aquaporins in Saccharomyces: characterization of a second functional water channel protein. Proc Natl Acad Sci USA 98:1000–1005.  https://doi.org/10.1073/pnas.98.3.1000 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Catlett NL, Lee BN, Yoder OC, Turgeon BG (2003) Split-Marker recombination for efficient targeted deletion of fungal genes. Fungal Genet Newsl 50:9–11.  https://doi.org/10.1007/s00294-010-0294-2 CrossRefGoogle Scholar
  12. Desjardins AE (2003) Gibberella from A (venaceae) to Z (eae). Annu Rev Phytopathol 41:177–198.  https://doi.org/10.1146/annurev.phyto.41.011703.115501 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Desjardins AE, Bai GH, Plattner RD, Proctor RH (2000) Analysis of aberrant virulence of Gibberella zeae following transformation-mediated complementation of a trichothecene-deficient (Tri5) mutant. Microbiology 146(Pt 8):2059–2068.  https://doi.org/10.1099/00221287-146-8-2059 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Dietz S, Bülow JV, Beitz E, Nehls U (2011) The aquaporin gene family of the ectomycorrhizal fungus Laccaria bicolor: lessons for symbiotic functions. New Phytol 190:927–940.  https://doi.org/10.1111/j.1469-8137.2011.03651.x CrossRefPubMedPubMedCentralGoogle Scholar
  15. Gale LR, Chen LF, Hernick CA, Takamura K, Kistler HC (2002) Population analysis of Fusarium graminearum from wheat fields in eastern china. Phytopathology 92:1315–1322.  https://doi.org/10.1094/PHYTO.2002.92.12.1315 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Gale LR, Ward TJ, Balmas V, Kistler HC (2007) Population subdivision of Fusarium graminearum sensu stricto in the upper midwestern united states. Phytopathology 97:1434–1439.  https://doi.org/10.1094/PHYTO-97-11-1434 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Goswami RS, Kistler HC (2004) Heading for disaster: Fusarium graminearum on cereal crops. Mol Plant Pathol 5:515–525.  https://doi.org/10.1111/j.13643703.2004.00252.x CrossRefPubMedPubMedCentralGoogle Scholar
  18. Heymann JB, Engel A (1999) Aquaporins: phylogeny, structure, and physiology of water channels. News Physiol Sci 14:187–193PubMedPubMedCentralGoogle Scholar
  19. Hou Z, Xue C, Peng Y, Katan T, Kistler HC, Xu JR (2002) A mitogen-activated protein kinase gene (MGV1) in Fusarium graminearum is required for female fertility, heterokaryon formation and plant infection. Mol Plant Microbe Interact 15:1119–1127.  https://doi.org/10.1094/MPMI.2002.15.11.1119 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Jenczmionka NJ, Maier FJ, Losch AP, Schafer W (2003) Mating, conidiation and pathogenicity of Fusarium graminearum, the main causal agent of the head-blight disease of wheat, are regulated by the MAP kinase gpmk1. Curr Genet 43:87–95.  https://doi.org/10.1007/s00294-003-0379-2 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Jensen M, Park S, Tajkhorshid E, Schulten K (2002) Energetics of glycerol conduction through aquaglyceroporin GlpF. Proc Natl Acad Sci USA 99:6731–6736.  https://doi.org/10.1073/pnas.102649299 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Jonkers W, Dong Y, Broz K, Kistler HC (2012) The wor1-like protein Fgp1 regulates pathogenicity, toxin synthesis and reproduction in the phytopathogenic fungus Fusarium graminearum. PLoS Pathog 8:e1002724.  https://doi.org/10.1371/journal.ppat.1002724 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Josefsen L, Droce A, Sondergaard TE, Sorensen JL, Bormann J, Schafer W, Giese H, Olsson S (2012) Autophagy provides nutrients for nonassimilating fungal structures and is necessary for plant colonization but not for infection in the necrotrophic plant pathogen Fusarium graminearum. Autophagy 8:326–337.  https://doi.org/10.4161/auto.18705 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kaldenhoff R, Fischer M (2006) Aquaporins in plants. Acta Physiol 187:169–176.  https://doi.org/10.1111/j.1748-1716.2006.01563.x CrossRefGoogle Scholar
  25. Leslie JF, Summerell BA, Leslie JF, Summerell BA (2006) The Fusariumlaboratory manual. Blackwell Pub. Professional, AmesGoogle Scholar
  26. Li T, Hu YJ, Hao ZP, Li H, Wang YS, Chen BD (2013) First cloning and characterization of two functional aquaporin genes from an arbuscular mycorrhizal fungus Glomus intraradices. New Phytol 197:617–630.  https://doi.org/10.1111/nph.12011 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Liu X, Jiang J, Yin Y, Ma Z (2013) Involvement of FgERG4 in ergosterol biosynthesis, vegetative differentiation and virulence in Fusarium graminearum. Mol Plant Pathol 14:71–83.  https://doi.org/10.1111/j.13643703.2012.00829.x CrossRefPubMedPubMedCentralGoogle Scholar
  28. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT method. Methods 25:402–408.  https://doi.org/10.3892/ijo.2013.1860 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Maurel C, Boursiac Y, Luu DT, Santoni V, Shahzad Z, Verdoucq L (2015) Aquaporins in plants. Physiol Rev 95:1321–1358.  https://doi.org/10.1152/physrev.00008.2015 CrossRefPubMedPubMedCentralGoogle Scholar
  30. McCotter SW, Horianopoulos LC, Kronstad JW (2016) Regulation of the fungal secretome. Curr Genet 62:533–545.  https://doi.org/10.1007/s00294-016-0578-2 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Meyers GL, Jung KW, Bang S, Kim J, Kim S, Hong J, Cheong E, Kim KH, Bahn YS (2017) The water channel protein aquaporin 1 regulates cellular metabolism and competitive fitness in a global fungal pathogen Cryptococcus neoformans. Environ Microbiol Rep 9:268–278.  https://doi.org/10.1111/1758-2229.12527 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Meyrial V, Laizé V, Gobin R, Ripoche P, Hohmann S, Tacnet F (2001) Existence of a tightly regulated water channel in Saccharomyces cerevisiae. FEBS J 268:334–343.  https://doi.org/10.1046/j.1432-1033.2001.01882.x CrossRefGoogle Scholar
  33. Mirocha CJ, Kolaczkowski E, Xie W, Yu H, Jelen H (1998) Analysis of deoxynivalenol and its derivatives (batch and single kernel) using gas chromatography/mass spectrometry. J Agric Food Chem 46:1414–1418CrossRefGoogle Scholar
  34. Mitra BN, Yoshino R, Morio T, Yokoyama M, Maeda M, Urushihara H, Tanaka Y (2000) Loss of a member of the aquaporin gene family, aqpA affects spore dormancy in Dictyostelium. Gene 251:131–139.  https://doi.org/10.1016/S03781119(00)00201-8 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann JB, Engel A, Fujiyoshi Y (2000) Structural determinants of water permeation through aquaporin-1. Nature 407:599–605.  https://doi.org/10.1038/35036519 CrossRefGoogle Scholar
  36. Nakatogawa H, Ichimura Y, Ohsumi Y (2007) Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell 130:165–178.  https://doi.org/10.1016/j.cell.2007.05.021 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Nielsen S, Frøkiær J, Marples D, Kwon TH, Agre P, Knepper MA (2002) Aquaporins in the kidney: from molecules to medicine. Physiol Rev 82:205–244.  https://doi.org/10.1152/physrev.00024.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Pettersson N, Filipsson C, Becit E, Brive L, Hohmann S (2005) Aquaporins in yeasts and filamentous fungi. Mol Biol Cell 97:487–500.  https://doi.org/10.1042/BC20040144 CrossRefGoogle Scholar
  39. Philips J, Herskowitz I (1997) Osmotic balance regulates cell fusion during mating in Saccharomyces cerevisiae. J Cell Biol 138:961–974CrossRefPubMedCentralGoogle Scholar
  40. Proctor RH, Hohn TM, McCormick SP (1995) Reduced virulence of Gibberella zeae caused by disruption of a trichothecene toxin biosynthetic gene. Mol Plant Microbe Interact 8:593–601CrossRefPubMedCentralGoogle Scholar
  41. Qin J, Wang G, Jiang C, Xu JR, Wang C (2015) Fgk3 glycogen synthase kinase is important for development, pathogenesis, and stress responses in Fusarium graminearum. Sci Rep 5:srep8504.  https://doi.org/10.1038/srep08504 CrossRefGoogle Scholar
  42. Rodrigues C, Tartaro Bujak I, Mihaljevic B, Soveral G, Cipak Gasparovic A (2017) Yeast aquaporin regulation by 4-hydroxynonenal is implicated in oxidative stress response. IUBMB life 69:355–362.  https://doi.org/10.1002/iub.1624 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Roncero C (1985) Effect of Calcofluor white and Congo red on fungal cell wall morphogenesis: in vivo activation of chitin polymerization. J Bacteriol 163:1180–1185PubMedPubMedCentralGoogle Scholar
  44. Sabir F, Loureirodias MC, Prista C (2016) Comparative analysis of sequences, polymorphisms and topology of yeasts aquaporins and aquaglyceroporins. FEMS Yeast Res 16:fow025.  https://doi.org/10.1093/femsyr/fow025 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Seong KY, Zhao X, Xu JR, Guldener U, Kistler HC (2008) Conidial germination in the filamentous fungus Fusarium graminearum. Fungal Genet Biol 45:389–399.  https://doi.org/10.1016/j.fgb.2007.09.002 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Seong KY, Pasquali M, Zhou X, Song J, Hilburn K, McCormick S, Dong Y, Xu JR, Kistler HC (2009) Global gene regulation by Fusarium transcription factors Tri6 and Tri10 reveals adaptations for toxin biosynthesis. Mol Microbiol 72:354–367.  https://doi.org/10.1111/j.1365-2958.2009.06649.x CrossRefPubMedPubMedCentralGoogle Scholar
  47. Sidoux-Walter F, Pettersson N, Hohmann S (2004) The Saccharomyces cerevisiae aquaporin Aqy1 is involved in sporulation. Proc Natl Acad Sci USA 101:17422–17427.  https://doi.org/10.1073/pnas.0404337101 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729.  https://doi.org/10.1093/molbev/mst197 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Trail F, Xu JR, San MP, Halgren RG, Kistler HC (2003) Analysis of expressed sequence tags from Gibberella zeae (anamorph Fusarium graminearum). Fungal Genet Biol 38:187–197.  https://doi.org/10.1016/S1087-1845(02)00529-7 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Turgeman T, Shatil-Cohen A, Moshelion M, Teper-Bamnolker P, Skory CD, Lichter A, Eshel D (2016) The role of aquaporins in pH-dependent germination of Rhizopus delemar spores. PloS One 11:e0150543.  https://doi.org/10.1371/journal.pone.0150543 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Tusnády GE, Simon I (2001) The HMMTOP transmembrane topology prediction server. Bioinformatics 17:849–850CrossRefGoogle Scholar
  52. Walle JVD, Sergent T, Piront N, Toussaint O, Schneider YJ, Larondelle Y (2010) Deoxynivalenol affects in vitro intestinal epithelial cell barrier integrity through inhibition of protein synthesis. Toxicol Appl Pharmacol 245:291–298.  https://doi.org/10.1016/j.taap.2010.03.012 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Yang L, Tvander L, Yang X, Yu D, Waalwijk C (2008) Fusarium populations on chinese barley show a dramatic gradient in mycotoxin profiles. Phytopathology 98:719–727.  https://doi.org/10.1094/PHYTO-98-6-0719 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Yang P, Chen XY, Wu HM, Fang WQ, Liang QF, Zheng YL, Olsson S, Zhang DM, Zhou J, Wang ZH, Zheng WH (2018) The 5-oxoprolinase is required for conidiation, sexual reproduction, virulence and deoxynivalenol production of Fusarium graminearum. Curr Genet 64:285–301.  https://doi.org/10.1007/s00294-017-0747-y CrossRefPubMedPubMedCentralGoogle Scholar
  55. Zhang H, Lee TVD, Waalwijk C, Chen W, Xu J, Xu J, Zhang Y, Feng J (2012) Population analysis of the Fusarium graminearum species complex from wheat in China show a shift to more aggressive isolates. PLoS One 7:e31722.  https://doi.org/10.1371/journal.pone.0031722 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Zhou X, Li G, Xu JR (2011) Efficient approaches for generating GFP fusion and epitope-tagging constructs in filamentous fungi. Methods Mol Biol 722:199–212.  https://doi.org/10.1007/978-1-61779-040-9_15 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Zhu QL, Sun L, Lian JJ, Gao XL, Zhao L, Ding MY, Li J, Liang YC (2016) The phospholipase C (FgPLC1) is involved in regulation of development, pathogenicity, and stress responses in Fusarium graminearum. Fungal Genet Biol 97:1–9.  https://doi.org/10.1016/j.fgb.2016.10.004 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Mingyu Ding
    • 1
  • Jing Li
    • 1
  • Xinyue Fan
    • 1
  • Fang He
    • 1
  • Xiaoyang Yu
    • 1
  • Lei Chen
    • 1
  • Shenshen Zou
    • 1
  • Yuancun Liang
    • 1
  • Jinfeng Yu
    • 1
  1. 1.Key Laboratory of Agricultural Microbiology, College of Plant ProtectionShandong Agricultural UniversityTai’anChina

Personalised recommendations