Advertisement

Neuroendokrine Neoplasien

Zwei Familien mit sehr unterschiedlichen Charakteristika vereint in einer Klassifikation
  • G. KlöppelEmail author
Schwerpunkt: Endokrine/Neuroendokrine Pathologie
  • 99 Downloads

Zusammenfassung

Alle neuroendokrinen Neoplasien (NEN) sind durch die Expression von Synaptophysin und Chromogranin A (oder B) charakterisiert, dennoch sind sie keine homogene Tumorgruppe. Paradigmatisch für diese Tumoren sind die NEN des gastroenteropankreatischen (GEP) Systems. Hier stehen sich 2 NEN-Familien gegenüber: Überwiegend gut differenzierte und gering proliferative NEN, auch neuroendokrine Tumoren (NET) genannt, sowie schlecht differenzierte und hoch proliferative NEN, die als neuroendokrine Karzinome (NEC) bezeichnet werden. GEP-NET werden weiterhin anhand ihrer proliferativen Aktivität in G1, G2 und G3 unterteilt. NEC sind definitionsgemäß G3-Karzinome. Die morphologische Dichotomie der NEN wird begleitet von Unterschieden in der Epidemiologie, Genetik, Klinik und Prognose und hat möglicherweise ihre Ursache in einer Abstammung aus unterschiedlichen Progenitorzellen. Genetisch zeichnen sich die NEC durch TP53- und RB1-Alterationen aus, die den NET fehlen und bei der Unterscheidung von NET G3 zu NEC hilfreich sind. Der Vergleich der GEP-NEN-WHO-Klassifikation mit NEN-Klassifikationen anderer Organsysteme offenbart Unterschiede in der Terminologie und den Kriterien der Kategorisierung. Außerdem fehlt ein Gradingsystem. Gemeinsam ist allen NEN-Klassifizierungen jedoch, dass sie zwischen 2 Tumorfamilien mit unterschiedlicher Differenzierung und Prognose unterscheiden. Dies erlaubt, den NEN einen einheitlichen Klassifikationsrahmen zu geben.

Schlüsselwörter

Chromogranine Gastrointestinaltrakt Neuroendokrine Karzinome Pankreastumoren Zelldifferenzierung 

Neuroendocrine neoplasms

Two families with distinct features unified in one classification (German version)

Abstract

All neuroendocrine neoplasms (NENs) are characterized by the expression of synaptophysin and chromogranin A (or B). Yet, they are not a homogeneous group of tumors. Paradigmatic for these tumors are the NENs of the gastroenteropancreatic (GEP) system. Two NEN families can be distinguished: predominantly well differentiated and low-proliferative NENs, called neuroendocrine tumors (NET), and poorly differentiated and high-proliferative NENs, called neuroendocrine carcinomas (NECs). Based on their proliferative activity, GEP NETs are further classified into G1, G2, and G3 tumors. NECs are per definition G3 carcinomas. The morphological NEN dichotomy is supported by differences in epidemiology, genetics, clinics, and prognosis, and potentially has its cause originating from different progenitor cells. Genetically, NECs are distinguished by TP53 and RB1 alterations, which are lacking in NETs and are helpful in the distinction of NETs from NECs. Comparison of the GEP NEN WHO classification with extragastroenteropancreatic NEN classifications commonly reveal differences in terminology and categorization. In addition, they lack a grading system. However, common to all NEN classifications is the recognition of two tumor families differing in histological differentiation and prognosis. This allows the construction of a uniform classification frame for all NENs.

Keywords

Chromogranins Gastrointestinal tract Neuroendocrine carcinomas Pancreatic neoplasms Cell differentiation 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

G. Klöppel gibt an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Literatur

  1. 1.
    Anlauf M, Perren A, Henopp T, Rudolph T, Garbrecht N, Schmitt A, Raffel A, Gimm O, Weihe E, Knoefel WT, Dralle H, Heitz PU, Komminoth P, Klöppel G (2007) Allelic deletion of the MEN1 gene in duodenal gastrin and somatostatin cell neoplasms and their precursor lesions. Gut 56:637–644CrossRefGoogle Scholar
  2. 2.
    Anlauf M, Schlenger R, Perren A, Bauersfeld J, Koch CA, Dralle H, Raffel A, Knoefel WT, Weihe E, Ruszniewski P, Couvelard A, Komminoth P, Heitz PU, Klöppel G (2006) Microadenomatosis of the endocrine pancreas in patients with and without the multiple endocrine neoplasia type 1 syndrome. Am J Surg Pathol 30:560–574CrossRefGoogle Scholar
  3. 3.
    Becker JC, Stang A, Hausen AZ, Fischer N, DeCaprio JA, Tothill RW, Lyngaa R, Hansen UK, Ritter C, Nghiem P, Bichakjian CK, Ugurel S, Schrama D (2018) Epidemiology, biology and therapy of Merkel cell carcinoma: conclusions from the EU project IMMOMEC. Cancer Immunol Immunother 67:341–351.  https://doi.org/10.1007/s00262-017-2099-3 CrossRefPubMedGoogle Scholar
  4. 4.
    Bosman FT, Carneiro F, Hruban RH, Theise ND (Hrsg) (2010) WHO classification of tumours of the digestive system. IARC, PagesGoogle Scholar
  5. 5.
    Capella C, Heitz PU, Höfler H, Solcia E, Klöppel G (1995) Revised classification of neuroendocrine tumours of the lung, pancreas and gut. Virchows Arch 425:547–560CrossRefGoogle Scholar
  6. 6.
    Champaneria MC, Modlin IM, Kidd M, Eick GN (2006) Friedrich Feyrter: a precise intellect in a diffuse system. Neuroendocrinology 83:394–404.  https://doi.org/10.1159/000096050 CrossRefPubMedGoogle Scholar
  7. 7.
    DeLellis RA, Lloyd RV, Heitz PU, Eng C (2004) Pathology and genetics of tumours of endocrine organs. IARC Press, LyonGoogle Scholar
  8. 8.
    Derks JL, Leblay N, Lantuejoul S, Dingemans AC, Speel EM, Fernandez-Cuesta L (2018) New insights into the molecular characteristics of pulmonary carcinoids and large cell neuroendocrine carcinomas, and the impact on their clinical management. J Thorac Oncol 13:752–766.  https://doi.org/10.1016/j.jtho.2018.02.002 CrossRefPubMedGoogle Scholar
  9. 9.
    van Eeden S, Offerhaus GJ (2006) Historical, current and future perspectives on gastrointestinal and pancreatic endocrine tumors. Virchows Arch 448:1–6.  https://doi.org/10.1007/s00428-005-0082-4 CrossRefPubMedGoogle Scholar
  10. 10.
    Feyrter F (1938) Über diffuse endokrine epitheliale Organe. J.A. Barth, LeipzigGoogle Scholar
  11. 11.
    Francis JM, Kiezun A, Ramos AH, Serra S, Pedamallu CS, Qian ZR, Banck MS, Kanwar R, Kulkarni AA, Karpathakis A, Manzo V, Contractor T, Philips J, Nickerson E, Pho N, Hooshmand SM, Brais LK, Lawrence MS, Pugh T, McKenna A, Sivachenko A, Cibulskis K, Carter SL, Ojesina AI, Freeman S, Jones RT, Voet D, Saksena G, Auclair D, Onofrio R, Shefler E, Sougnez C, Grimsby J, Green L, Lennon N, Meyer T, Caplin M, Chung DC, Beutler AS, Ogino S, Thirlwell C, Shivdasani R, Asa SL, Harris CR, Getz G, Kulke M, Meyerson M (2013) Somatic mutation of CDKN1B in small intestine neuroendocrine tumors. Nat Genet 45:1483–1486.  https://doi.org/10.1038/ng.2821 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Furlan A, Dyachuk V, Kastriti ME, Calvo-Enrique L, Abdo H, Hadjab S, Chontorotzea T, Akkuratova N, Usoskin D, Kamenev D, Petersen J, Sunadome K, Memic F, Marklund U, Fried K, Topilko P, Lallemend F, Kharchenko PV, Ernfors P, Adameyko I (2017) Multipotent peripheral glial cells generate neuroendocrine cells of the adrenal medulla. Science.  https://doi.org/10.1126/science.aal3753 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    George J, Lim JS, Jang SJ, Cun Y, Ozretic L, Kong G, Leenders F, Lu X, Fernandez-Cuesta L, Bosco G, Muller C, Dahmen I, Jahchan NS, Park KS, Yang D, Karnezis AN, Vaka D, Torres A, Wang MS, Korbel JO, Menon R, Chun SM, Kim D, Wilkerson M, Hayes N, Engelmann D, Putzer B, Bos M, Michels S, Vlasic I, Seidel D, Pinther B, Schaub P, Becker C, Altmuller J, Yokota J, Kohno T, Iwakawa R, Tsuta K, Noguchi M, Muley T, Hoffmann H, Schnabel PA, Petersen I, Chen Y, Soltermann A, Tischler V, Choi CM, Kim YH, Massion PP, Zou Y, Jovanovic D, Kontic M, Wright GM, Russell PA, Solomon B, Koch I, Lindner M, Muscarella LA, la Torre A, Field JK, Jakopovic M, Knezevic J, Castanos-Velez E, Roz L, Pastorino U, Brustugun OT, Lund-Iversen M, Thunnissen E, Kohler J, Schuler M, Botling J, Sandelin M, Sanchez-Cespedes M, Salvesen HB, Achter V, Lang U, Bogus M, Schneider PM, Zander T, Ansen S, Hallek M, Wolf J, Vingron M, Yatabe Y, Travis WD, Nurnberg P, Reinhardt C, Perner S, Heukamp L, Buttner R, Haas SA, Brambilla E, Peifer M, Sage J, Thomas RK (2015) Comprehensive genomic profiles of small cell lung cancer. Nature 524:47–53.  https://doi.org/10.1038/nature14664 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Gosset A, Masson P (1914) Tumeurs endocrines de l’appendice. Presse Med 25:237–240Google Scholar
  15. 15.
    Heetfeld M, Chougnet CN, Olsen IH, Rinke A, Borbath I, Crespo G, Barriuso J, Pavel M, O’Toole D, Walter T (2015) Characteristics and treatment of patients with G3 gastroenteropancreatic neuroendocrine neoplasms. Endocr Relat Cancer 22:657–664.  https://doi.org/10.1530/erc-15-0119 CrossRefPubMedGoogle Scholar
  16. 16.
    Hermann G, Konukiewitz B, Schmitt A, Perren A, Klöppel G (2011) Hormonally defined pancreatic and duodenal neuroendocrine tumors differ in their transcription factor signatures: expression of ISL1, PDX1, NGN3, and CDX2. Virchows Arch 459:147–154.  https://doi.org/10.1007/s00428-011-1118-6 CrossRefPubMedGoogle Scholar
  17. 17.
    Hijioka S, Hosoda W, Matsuo K, Ueno M, Furukawa M, Yoshitomi H, Kobayashi N, Ikeda M, Ito T, Nakamori S, Ishii H, Kodama Y, Morizane C, Okusaka T, Yanagimoto H, Notohara K, Taguchi H, Kitano M, Yane K, Maguchi H, Tsuchiya Y, Komoto I, Tanaka H, Tsuji A, Hashigo S, Kawaguchi Y, Mine T, Kanno A, Murohisa G, Miyabe K, Takagi T, Matayoshi N, Yoshida T, Hara K, Imamura M, Furuse J, Yatabe Y, Mizuno N (2017) Rb loss and KRAS mutation are predictors of the response to platinum-based chemotherapy in pancreatic neuroendocrine neoplasm with grade 3: A Japanese multicenter pancreatic NEN-G3 study. Clin Cancer Res.  https://doi.org/10.1158/1078-0432.ccr-16-3135 CrossRefPubMedGoogle Scholar
  18. 18.
    Jesinghaus M, Konukiewitz B, Keller G, Kloor M, Steiger K, Reiche M, Penzel R, Endris V, Arsenic R, Hermann G, Stenzinger A, Weichert W, Pfarr N, Klöppel G (2017) Colorectal mixed adenoneuroendocrine carcinomas and neuroendocrine carcinomas are genetically closely related to colorectal adenocarcinomas. Mod Pathol 30:610–619.  https://doi.org/10.1038/modpathol.2016.220 CrossRefPubMedGoogle Scholar
  19. 19.
    Jiao Y, Shi C, Edil BH, de Wilde RF, Klimstra DS, Maitra A, Schulick RD, Tang LH, Wolfgang CL, Choti MA, Velculescu VE, Diaz LA Jr., Vogelstein B, Kinzler KW, Hruban RH, Papadopoulos N (2011) DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science 331:1199–1203.  https://doi.org/10.1126/science.1200609 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Karpathakis A, Dibra H, Pipinikas C, Feber A, Morris T, Francis J, Oukrif D, Mandair D, Pericleous M, Mohmaduvesh M, Serra S, Ogunbiyi O, Novelli M, Luong T, Asa SL, Kulke M, Toumpanakis C, Meyer T, Caplin M, Meyerson M, Beck S, Thirlwell C (2016) Prognostic impact of novel molecular subtypes of small intestinal neuroendocrine tumor. Clin Cancer Res 22:250–258.  https://doi.org/10.1158/1078-0432.ccr-15-0373 CrossRefPubMedGoogle Scholar
  21. 21.
    Kasajima A, Konukiewitz B, Oka N, Suzuki H, Sakurada A, Okada Y, Kameya T, Ishikawa Y, Sasano H, Weichert W, Kloppel G (2018) Clinicopathologic profiling of lung carcinoids with a Ki67 index greater than 20. Neuroendocrinology.  https://doi.org/10.1159/000495806 CrossRefPubMedGoogle Scholar
  22. 22.
    Klimstra DS (2016) Pathologic classification of neuroendocrine neoplasms. Hematol Oncol Clin North Am 30:1–19.  https://doi.org/10.1016/j.hoc.2015.08.005 CrossRefPubMedGoogle Scholar
  23. 23.
    Klöppel G, Anlauf M, Perren A (2007) Endocrine precursor lesions of gastroenteropancreatic neuroendocrine tumors. Endocr Pathol 18:150–155CrossRefGoogle Scholar
  24. 24.
    Klöppel G, La Rosa S (2018) Ki67 labeling index: assessment and prognostic role in gastroenteropancreatic neuroendocrine neoplasms. Virchows Arch 472:341–349.  https://doi.org/10.1007/s00428-017-2258-0 CrossRefPubMedGoogle Scholar
  25. 25.
    Konukiewitz B, Agaimy A, Weichert W, Klöppel G (2018) Neuroendocrine neoplasms of the head and neck. Pathologe.  https://doi.org/10.1007/s00292-017-0404-8 CrossRefPubMedGoogle Scholar
  26. 26.
    Konukiewitz B, Jesinghaus M, Steiger K, Schlitter AM, Kasajima A, Sipos B, Zamboni G, Weichert W, Pfarr N, Klöppel G (2018) Pancreatic neuroendocrine carcinomas reveal a closer relationship to ductal adenocarcinomas than to neuroendocrine tumors G3. Hum Pathol.  https://doi.org/10.1016/j.humpath.2018.03.018 CrossRefPubMedGoogle Scholar
  27. 27.
    Konukiewitz B, Schlitter AM, Jesinghaus M, Pfister D, Steiger K, Segler A, Agaimy A, Sipos B, Zamboni G, Weichert W, Esposito I, Pfarr N, Klöppel G (2017) Somatostatin receptor expression related to TP53 and RB1 alterations in pancreatic and extrapancreatic neuroendocrine neoplasms with a Ki67-index above 20. Mod Pathol 30:587–598.  https://doi.org/10.1038/modpathol.2016.217 CrossRefPubMedGoogle Scholar
  28. 28.
    Lloyd RV, Osamura RY, Klöppel G, Rosai J (2017) WHO classification of tumours of endocrine organs. IARC Press, LyonGoogle Scholar
  29. 29.
    Mafficini A, Scarpa A (2019) Genetics and epigenetics of gastroenteropancreatic neuroendocrine neoplasms. Endocr Rev.  https://doi.org/10.1210/er.2018-00160 CrossRefPubMedGoogle Scholar
  30. 30.
    Marinoni I, Kurrer AS, Vassella E, Dettmer M, Rudolph T, Banz V, Hunger F, Pasquinelli S, Speel EJ, Perren A (2014) Loss of DAXX and ATRX are associated with chromosome instability and reduced survival of patients with pancreatic neuroendocrine tumors. Baillieres Clin Gastroenterol 146:453–460.e455.  https://doi.org/10.1053/j.gastro.2013.10.020 CrossRefGoogle Scholar
  31. 31.
    de Mestier L, Cros J, Neuzillet C, Hentic O, Egal A, Muller N, Bouche O, Cadiot G, Ruszniewski P, Couvelard A, Hammel P (2017) Digestive system mixed neuroendocrine-non-neuroendocrine neoplasms. Neuroendocrinology 105:412–425.  https://doi.org/10.1159/000475527 CrossRefPubMedGoogle Scholar
  32. 32.
    Nieser M, Henopp T, Brix J, Stoss L, Sitek B, Naboulsi W, Anlauf M, Schlitter AM, Klöppel G, Gress T, Moll R, Bartsch DK, Heverhagen AE, Knoefel WT, Kaemmerer D, Haybaeck J, Fend F, Sperveslage J, Sipos B (2017) Loss of chromosome 18 in neuroendocrine tumors of the small intestine: the enigma remains. Neuroendocrinology 104:302–312.  https://doi.org/10.1159/000446917 CrossRefPubMedGoogle Scholar
  33. 33.
    Pavel ME, Singh S, Strosberg JR, Bubuteishvili-Pacaud L, Degtyarev E, Neary MP, Carnaghi C, Tomasek J, Wolin E, Raderer M, Lahner H, Valle JW, Pommier R, Van Cutsem E, Tesselaar MET, Fave GD, Buzzoni R, Hunger M, Eriksson J, Cella D, Ricci JF, Fazio N, Kulke MH, Yao JC (2017) Health-related quality of life for everolimus versus placebo in patients with advanced, non-functional, well-differentiated gastrointestinal or lung neuroendocrine tumours (RADIANT-4): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial The Lancet. Oncology.  https://doi.org/10.1016/s1470-2045(17)30471-0 CrossRefPubMedGoogle Scholar
  34. 34.
    Pearse AG, Polak JM (1974) Endocrine tumours of neural crest origin: neurolophomas, apudomas and the APUD concept. Med Biol 52:3–18PubMedGoogle Scholar
  35. 35.
    Perigny M, Hammel P, Corcos O, Larochelle O, Giraud S, Richard S, Sauvanet A, Belghiti J, Ruszniewski P, Bedossa P, Couvelard A (2009) Pancreatic endocrine microadenomatosis in patients with von Hippel-Lindau disease: characterization by VHL/HIF pathway proteins expression. Am J Surg Pathol 33:739–748.  https://doi.org/10.1097/PAS.0b013e3181967992 CrossRefPubMedGoogle Scholar
  36. 36.
    Perren A, Anlauf M, Henopp T, Rudolph T, Schmitt A, Raffel A, Gimm O, Weihe E, Knoefel WT, Dralle H, Heitz PU, Komminoth P, Klöppel G (2007) Multiple endocrine neoplasia type 1: loss of one MEN1 allele in tumors and monohormonal endocrine cell clusters, but not in islet hyperplasia of the pancreas. A combined FISH and immunofluorescence study J. Clin Endocrinol Metab 92:1118–1128CrossRefGoogle Scholar
  37. 37.
    Pipeleers-Marichal M, Somers G, Willems G, Foulis A, Imrie C, Bishop AE, Polak JM, Hacki WH, Stamm B, Heitz PU et al (1990) Gastrinomas in the duodenums of patients with multiple endocrine neoplasia type 1 and the Zollinger-Ellison syndrome. N Engl J Med 322:723–727.  https://doi.org/10.1056/NEJM199003153221103 CrossRefPubMedGoogle Scholar
  38. 38.
    Raj N, Shah R, Stadler Z, Mukherjee S, Chou J, Untch B, Li J, Kelly V, Saltz LB, Mandelker D, Ladanyi M, Berger MF, Klimstra DS, Reidy-Lagunes D, Osoba M (2018) Real-time genomic characterization of metastatic pancreatic neuroendocrine tumors has prognostic implications and identifies potential germline actionability. JCO Precis Oncol.  https://doi.org/10.1200/po.17.00267 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Rindi G, Klimstra DS, Abedi-Ardekani B, Asa SL, Bosman FT, Brambilla E, Busam KJ, de Krijger RR, Dietel M, El-Naggar AK, Fernandez-Cuesta L, Kloppel G, McCluggage WG, Moch H, Ohgaki H, Rakha EA, Reed NS, Rous BA, Sasano H, Scarpa A, Scoazec JY, Travis WD, Tallini G, Trouillas J, van Krieken JH, Cree IA (2018) A common classification framework for neuroendocrine neoplasms: an International Agency for Research on Cancer (IARC) and World Health Organization (WHO) expert consensus proposal. Mod Pathol 31:1770–1786.  https://doi.org/10.1038/s41379-018-0110-y CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Rindi G, Klöppel G, Ahlman H, Caplin M, Couvelard A, de Herder WW, Eriksson B, Falchetti A, Falconi M, Komminoth P, Körner M, Lopes JM, McNicol AM, Nilsson O, Perren A, Scarpa A, Scoazec JY, Wiedenmann B, Frascati Consensus Conference participants, European Neuroendocrine Tumor Society (ENETS) (2006) TNM staging of foregut (neuro)endocrine tumors: a consensus proposal including a grading system. Virchows Arch 449:395–401CrossRefGoogle Scholar
  41. 41.
    Rindi G, Klöppel G, Couvelard A, Komminoth P, Körner M, Lopes JM, McNicol AM, Nilsson O, Perren A, Scarpa A, Scoazec JY, Wiedenmann B (2007) TNM staging of midgut and hindgut (neuro)endocrine tumors: a consensus proposal including a grading system. Virchows Arch 451:757–762CrossRefGoogle Scholar
  42. 42.
    Rindi G, Wiedenmann B (2011) Neuroendocrine neoplasms of the gut and pancreas: new insights. Nat Rev Endocrinol 8:54–64.  https://doi.org/10.1038/nrendo.2011.120 CrossRefPubMedGoogle Scholar
  43. 43.
    Rosai J (2011) The origin of neuroendocrine tumors and the neural crest saga. Mod Pathol 24(Suppl 2):S53–S57.  https://doi.org/10.1038/modpathol.2010.166 CrossRefPubMedGoogle Scholar
  44. 44.
    Scarpa A, Chang DK, Nones K, Corbo V, Patch AM, Bailey P, Lawlor RT, Johns AL, Miller DK, Mafficini A, Rusev B, Scardoni M, Antonello D, Barbi S, Sikora KO, Cingarlini S, Vicentini C, McKay S, Quinn MC, Bruxner TJ, Christ AN, Harliwong I, Idrisoglu S, McLean S, Nourse C, Nourbakhsh E, Wilson PJ, Anderson MJ, Fink JL, Newell F, Waddell N, Holmes O, Kazakoff SH, Leonard C, Wood S, Xu Q, Nagaraj SH, Amato E, Dalai I, Bersani S, Cataldo I, Dei Tos AP, Capelli P, Davi MV, Landoni L, Malpaga A, Miotto M, Whitehall VL, Leggett BA, Harris JL, Harris J, Jones MD, Humphris J, Chantrill LA, Chin V, Nagrial AM, Pajic M, Scarlett CJ, Pinho A, Rooman I, Toon C, Wu J, Pinese M, Cowley M, Barbour A, Mawson A, Humphrey ES, Colvin EK, Chou A, Lovell JA, Jamieson NB, Duthie F, Gingras MC, Fisher WE, Dagg RA, Lau LM, Lee M, Pickett HA, Reddel RR, Samra JS, Kench JG, Merrett ND, Epari K, Nguyen NQ, Zeps N, Falconi M, Simbolo M, Butturini G, Van Buren G, Partelli S, Fassan M, Khanna KK, Gill AJ, Wheeler DA, Gibbs RA, Musgrove EA, Bassi C, Tortora G, Pederzoli P, Pearson JV, Waddell N, Biankin AV, Grimmond SM (2017) Whole-genome landscape of pancreatic neuroendocrine tumours. Nature 543:65–71.  https://doi.org/10.1038/nature21063 CrossRefPubMedGoogle Scholar
  45. 45.
    Schimmack S, Svejda B, Lawrence B, Kidd M, Modlin IM (2011) The diversity and commonalities of gastroenteropancreatic neuroendocrine tumors. Langenbecks Arch Surg 396:273–298.  https://doi.org/10.1007/s00423-011-0739-1 CrossRefPubMedGoogle Scholar
  46. 46.
    Schmid KW, Kroll M, Hittmair A, Maier H, Totsch M, Gasser R, Finkenstett G, Hogue-Angeletti R, Fischer-Colbrie R (1991) Chromogranin A and B in adenomas of the pituitary. An immunohistochemical study of 42 cases. Am J Surg Pathol 15:1072–1077CrossRefGoogle Scholar
  47. 47.
    Schmitt AM, Marinoni I, Blank A, Perren A (2016) New genetics and genomic data on pancreatic neuroendocrine tumors: implications for diagnosis, treatment, and targeted therapies. Endocr Pathol 27:200–204.  https://doi.org/10.1007/s12022-016-9447-2 CrossRefPubMedGoogle Scholar
  48. 48.
    Schonhoff SE, Giel-Moloney M, Leiter AB (2004) Minireview: development and differentiation of gut endocrine cells. Endocrinology 145:2639–2644.  https://doi.org/10.1210/en.2004-0051 CrossRefPubMedGoogle Scholar
  49. 49.
    Solcia E, Klöppel G, Sobin L (2000) Histological typing of endocrine tumours. Springer, BerlinCrossRefGoogle Scholar
  50. 50.
    Swarts DR, Ramaekers FC, Speel EJ (2012) Molecular and cellular biology of neuroendocrine lung tumors: evidence for separate biological entities. Biochim Biophys Acta 1826:255–271.  https://doi.org/10.1016/j.bbcan.2012.05.001 CrossRefPubMedGoogle Scholar
  51. 51.
    Szczyrba J, Niesen A, Wagner M, Wandernoth PM, Aumüller G, Wennemuth G (2017) Neuroendocrine cells of the prostate derive from the neural crest. J Biol Chem 292:2021–2031.  https://doi.org/10.1074/jbc.M116.755082 CrossRefPubMedGoogle Scholar
  52. 52.
    Tang LH, Untch BR, Reidy DL, O’Reilly E, Dhall D, Jih L, Basturk O, Allen PJ, Klimstra DS (2016) Well-differentiated Neuroendocrine tumors with a morphologically apparent high-grade component: a pathway distinct from poorly differentiated neuroendocrine carcinomas. Clin Cancer Res 22:1011–1017.  https://doi.org/10.1158/1078-0432.ccr-15-0548 CrossRefPubMedGoogle Scholar
  53. 53.
    Volante M, Brizzi MP, Faggiano A, La Rosa S, Rapa I, Ferrero A, Mansueto G, Righi L, Garancini S, Capella C, De Rosa G, Dogliotti L, Colao A, Papotti M (2007) Somatostatin receptor type 2A immunohistochemistry in neuroendocrine tumors: a proposal of scoring system correlated with somatostatin receptor scintigraphy. Mod Pathol 20:1172–1182.  https://doi.org/10.1038/modpathol.3800954 CrossRefPubMedGoogle Scholar
  54. 54.
    Wiedenmann B, Franke WW, Kuhn C, Moll R, Gould VE (1986) Synaptophysin: a marker protein for neuroendocrine cells and neoplasms. Proc Natl Acad Sci U S A 83:3500–3504CrossRefGoogle Scholar
  55. 55.
    Woischke C, Schaaf CW, Yang HM, Vieth M, Veits L, Geddert H, Markl B, Stommer P, Schaeffer DF, Frolich M, Blum H, Vosberg S, Greif PA, Jung A, Kirchner T, Horst D (2016) In-depth mutational analyses of colorectal neuroendocrine carcinomas with adenoma or adenocarcinoma components. Mod Pathol.  https://doi.org/10.1038/modpathol.2016.150 CrossRefPubMedGoogle Scholar
  56. 56.
    Yachida S, Vakiani E, White CM, Zhong Y, Saunders T, Morgan R, de Wilde RF, Maitra A, Hicks J, Demarzo AM, Shi C, Sharma R, Laheru D, Edil BH, Wolfgang CL, Schulick RD, Hruban RH, Tang LH, Klimstra DS, Iacobuzio-Donahue CA (2012) Small cell and large cell neuroendocrine carcinomas of the pancreas are genetically similar and distinct from well-differentiated pancreatic neuroendocrine tumors. Am J Surg Pathol 36:173–184.  https://doi.org/10.1097/PAS.0b013e3182417d36 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Institut für Pathologie, Konsultationszentrum für Pankreas und Endokrine TumorenTechnische Universität MünchenMünchenDeutschland

Personalised recommendations