Advertisement

Der Pathologe

, Volume 40, Issue 2, pp 140–147 | Cite as

Neuropathologie der Medulloblastome und anderer embryonaler Tumoren des ZNS

Präzisierung der Diagnostik durch Integration genetischer Marker
  • T. PietschEmail author
Schwerpunkt: Neuropathologie

Zusammenfassung

Die überarbeitete WHO-Klassifikation von Tumoren des zentralen Nervensystems 2016 hat das Konzept der integrierten Diagnose eingeführt. Die Definition von Medulloblastomentitäten erfordert nun eine Kombination der traditionellen histologischen Informationen mit zusätzlichen molekularen/genetischen Merkmalen. Zur Definition der histopathologischen Komponente der Medulloblastomdiagnose sollten die Tumoren einer der 4 Entitäten klassisches, desmoplastisches/noduläres (DNMB), extensiv noduläres (MBEN) oder großzelliges/anaplastisches (LC/A) Medulloblastom zugeordnet werden. Die genetisch definierte Komponente ist eine der 4 Entitäten „WNT-aktiviert“, „SHH-aktiviert und TP53-Wildtyp“, „SHH-aktiviert und TP53-mutiert“ oder „Non-WNT-/Non-SHH-Medulloblastom“. Es stehen robuste und validierte Methoden zur Verfügung, um eine präzise Diagnose dieser Medulloblastomentitäten gemäß der aktualisierten WHO-Klassifikation und differenzialdiagnostische Abgrenzung zu anderen Tumorentitäten zu ermöglichen. Eine Analyse von immunhistochemischen Markern wie ß‑Catenin, Yap1, p75-NGFR, Otx2 und p53 in Kombination mit gezielter Sequenzierung und Beurteilung der chromosomalen Kopienzahl (wie FISH-Analyse der MYC-Gene) ermöglicht eine präzise Stratifizierung von Patienten zur risikoadaptierten Therapie. In die Gruppe der anderen embryonalen Tumoren des zentralen Nervensystems fallen die embryonalen Tumoren mit mehrlagigen Rosetten (ETMR), die zum großen Teil eine Amplifikation des microRNA-Clusters C19MC tragen, und die (Ganglio‑)Neuroblastome des ZNS (Zentralnervensystem). Auch diese seltenen Tumoren können durch charakteristische genetische und immunphänotypische Merkmale sicher identifiziert werden.

Schlüsselwörter

Medulloblastom Neuroblastom Präzisionsmedizin Primitive neuroektodermale Tumoren Tumorsuppressorprotein p53 

Neuropathology of medulloblastomas and other CNS embryonal tumors

Precision diagnostics through the integration of genetic markers

Abstract

The revised WHO classification of tumors of the central nervous system (CNS) in 2016 introduced the concept of the “integrated diagnosis.” The definition of medulloblastoma entities now requires a combination of traditional histological information with additional molecular/genetic features. To define the histopathological component of the medulloblastoma diagnosis, tumors have to be assigned to one of the four histological entities: classic, desmoplastic/nodular (DNMB), extensive nodular (MBEN), or large cell/anaplastic (LC/A) medulloblastoma. The genetically defined component is one of the four entities: “WNT activated”, “SHH activated and TP53 wildtype”, “SHH activated and TP53 mutant”, or “non-WNT/non-SHH medulloblastoma.” Robust and validated methods are available that allow a precise diagnosis of these medulloblastoma entities according to the updated WHO classification and for differential diagnostic purposes. An immunohistochemical analysis of protein markers including ß‑Catenin, Yap1, p75-NGFR, Otx2 and p53, in combination with targeted sequencing and chromosomal copy number assessment (such as FISH analysis for MYC genes), allows a precise stratification of patients for risk-adapted treatment. The group of other embryonic tumors of the central nervous system includes embryonic tumors with multilayered rosettes (ETMR), which frequently carry an amplification of the micro-RNA cluster C19MC and the (ganglio-)neuroblastomas of the CNS. These rare tumors can also be identified by characteristic genetic and immunophenotypic features.

Keywords

Medulloblastoma Neuroblastoma Precision medicine Primitive neuroectodermal tumors Tumor suppressor protein p53 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

T. Pietsch gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Capper D, Jones DTW, Sill M et al (2018) DNA methylation-based classification of central nervous system tumours. Nature 555:469–474CrossRefGoogle Scholar
  2. 2.
    De Haas T, Oussoren E, Grajkowska W et al (2006) OTX1 and OTX2 expression correlates with the clinicopathologic classification of medulloblastomas. J Neuropathol Exp Neurol 65:176–186CrossRefGoogle Scholar
  3. 3.
    Eberhart CG, Cavenee WK, Pietsch T (2016) Naevoid basal cell carcinoma syndrome. In: Louis DN, Ohgaki H, Wiestler OD, Cavenee WK (Hrsg) World Health Organization classification of tumors of the central nervous system. IARC, Lyon, S 319–321Google Scholar
  4. 4.
    Ellison DW, Giangaspero F, Eberhart CG, Haapasalo H, Pietsch T, Wiestler OD, Pfister S (2016) Medulloblastomas, genetically defined. In: Louis DN, Ohgaki H, Wiestler OD, Cavenee WK (Hrsg) World Health Organization classification of tumours of the central nervous system. IARC, Lyon, S 188–193Google Scholar
  5. 5.
    Ellison DW, Onilude OE, Lindsey JC et al (2005) beta-Catenin status predicts a favorable outcome in childhood medulloblastoma: the United Kingdom Children’s Cancer Study Group Brain Tumour Committee. J Clin Oncol 23:7951–7957CrossRefGoogle Scholar
  6. 6.
    Goschzik T, Schwalbe EC, Hicks D et al (2018) Prognostic effect of whole chromosomal aberration signatures in standard-risk, non-WNT/non-SHH medulloblastoma: a retrospective, molecular analysis of the HIT-SIOP PNET 4 trial. Lancet Oncol 19:1602–1616CrossRefGoogle Scholar
  7. 7.
    Goschzik T, zur Mühlen A, Kristiansen G et al (2015) Molecular stratification of medulloblastoma: comparison of histological and genetic methods to detect Wnt activated tumours. Neuropathol Appl Neurobiol 41:135–144CrossRefGoogle Scholar
  8. 8.
    Koch A, Hrychyk A, Hartmann W et al (2007) Mutations of the Wnt antagonist AXIN2 (Conductin) result in TCF-dependent transcription in medulloblastomas. Int J Cancer 121:284–291CrossRefGoogle Scholar
  9. 9.
    Koch A, Waha A, Tonn JC et al (2001) Somatic mutations of WNT/wingless signaling pathway components in primitive neuroectodermal tumors. Int J Cancer 93:445–449CrossRefGoogle Scholar
  10. 10.
    Kool M, Jones DT, Jager N et al (2014) Genome sequencing of SHH medulloblastoma predicts genotype-related response to smoothened inhibition. Cancer Cell 25:393–405CrossRefGoogle Scholar
  11. 11.
    Korshunov A, Sturm D, Ryzhova M et al (2014) Embryonal tumor with abundant neuropil and true rosettes (ETANTR), ependymoblastoma, and medulloepithelioma share molecular similarity and comprise a single clinicopathological entity. Acta Neuropathol 128:279–289CrossRefGoogle Scholar
  12. 12.
    Küchler J, Hartmann W, Waha A et al (2011) p75(NTR) induces apoptosis in medulloblastoma cells. Int J Cancer 128:1804–1812CrossRefGoogle Scholar
  13. 13.
    Louis DN, Ohgaki H, Wiestler OD, Cavenee WK (2016) WHO classification of tumours of the central nervous system. IARC, LyonGoogle Scholar
  14. 14.
    Pietsch T, Ellison DW, Haapasalo H et al (2016) Desmoplastic/nodular medulloblastoma. In: Louis DN, Ohgaki H, Wiestler OD, Cavenee WK (Hrsg) World Health Organization classification of tumours of the central nervous system. IARC, Lyon, S 195–197Google Scholar
  15. 15.
    Pietsch T, Haberler C (2016) Update on the integrated histopathological and genetic classification of medulloblastoma—a practical diagnostic guideline. Clin Neuropathol 35:344–352CrossRefGoogle Scholar
  16. 16.
    Pietsch T, Schmidt R, Remke M et al (2014) Prognostic significance of clinical, histopathological, and molecular characteristics of medulloblastomas in the prospective HIT2000 multicenter clinical trial cohort. Acta Neuropathol 128:137–149CrossRefGoogle Scholar
  17. 17.
    Pietsch T, Waha A, Koch A et al (1997) Medulloblastomas of the desmoplastic variant carry mutations of the human homologue of Drosophila patched. Cancer Res 57:2085–2088PubMedGoogle Scholar
  18. 18.
    Remke M, Hielscher T, Northcott PA et al (2011) Adult medulloblastoma comprises three major molecular variants. J Clin Oncol 29:2717–2723CrossRefGoogle Scholar
  19. 19.
    Rutkowski S, Bode U, Deinlein F et al (2005) Treatment of early childhood medulloblastoma by postoperative chemotherapy alone. N Engl J Med 352:978–986CrossRefGoogle Scholar
  20. 20.
    Rutkowski S, Gerber NU, Von Hoff K et al (2009) Treatment of early childhood medulloblastoma by postoperative chemotherapy and deferred radiotherapy. Neuro-oncology 11:201–210CrossRefGoogle Scholar
  21. 21.
    Sturm D, Orr BA, Toprak UH et al (2016) New brain tumor entities emerge from molecular classification of CNS-PNETs. Cell 164:1060–1072CrossRefGoogle Scholar
  22. 22.
    Tabori U, Shlien A, Baskin B et al (2010) TP53 alterations determine clinical subgroups and survival of patients with choroid plexus tumors. J Clin Oncol 28:1995–2001CrossRefGoogle Scholar
  23. 23.
    Taylor MD, Northcott PA, Korshunov A et al (2012) Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol 123:465–472CrossRefGoogle Scholar
  24. 24.
    Wang Y, Moorhead M, Karlin-Neumann G et al (2007) Analysis of molecular inversion probe performance for allele copy number determination. Genome Biol 8:R246CrossRefGoogle Scholar
  25. 25.
    Zhao F, Ohgaki H, Xu L et al (2016) Molecular subgroups of adult medulloblastoma: a long-term single-institution study. Neuro-oncology 18:982–990CrossRefGoogle Scholar
  26. 26.
    Zhukova N, Ramaswamy V, Remke M et al (2013) Subgroup-specific prognostic implications of TP53 mutation in medulloblastoma. J Clin Oncol 31:2927–2935CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Institut für Neuropathologie, DGNN Hirntumor-Referenzzentrum, DZNE Deutsches Zentrum für Neurodegenerative ErkrankungenUniversität BonnBonnDeutschland

Personalised recommendations