Advertisement

Massenspektrometrie – Anwendungsmöglichkeiten in der Pathologie

  • K. SchwambornEmail author
Hauptreferate: Aktuelle Habilitationen

Zusammenfassung

Hintergrund

Um Patienten die optimale Therapie anbieten zu können, sind heutzutage immer präzisere Diagnosen notwendig. Daher wird das oft nur in geringen Mengen vorliegende Probenmaterial mit immer aufwendigeren, insbesondere genomischen Methoden untersucht. Da die Genomik aber nur eine unvollständige Abbildung der Dynamik des menschlichen Organismus bietet, liegt eine Lösung in der Verwendung proteomischer Methoden, d. h. der Analyse des Proteinäquivalents des Genoms.

Ziel der Arbeit

Beurteilung verschiedener proteomischer Methoden für die Untersuchung von Körperflüssigkeiten und Gewebe im Hinblick auf den Einsatz in der Diagnostik.

Material und Methoden

In allen vorgestellten Studien werden massenspektrometrische Analysen für die Subtypisierung verschiedener Patientenkollektive mit unterschiedlichen Erkrankungen verwendet.

Ergebnisse

Während sich die klassischen proteinchemischen Methoden insbesondere für die Analyse von Körperflüssigkeiten, wie z. B. Serum in der Diagnostik der chronischen Hepatitis C oder des Harnblasenkarzinoms, eignen, sind diese in Bezug auf Gewebe kritischer zu betrachten. Denn für diese Analyse werden die Zellen aus dem Gewebeverband herausgelöst und lysiert, sodass die Informationen der Histologie verloren gehen. Daher eignet sich für die Gewebeanalyse die bildgebende Massenspektrometrie, die einen intakten Gewebeschnitt nutzt. Der Einsatz dieser Methode und der mögliche Nutzen auch für die pathologische Diagnostik konnte am Beispiel verschiedener Tumorerkrankungen (Prostatakarzinom, Hodgkin-Lymphom, Zervixkarzinom und verschiedener Adenokarzinome) gezeigt werden.

Diskussion

Massenspektrometrische Analyseverfahren erlauben eine diagnostische Zuordnung mit hoher Sensitivität und Spezifität. Im Vergleich zu Verfahren der konventionellen histologischen Diagnostik sind diese schneller, bieten eine vergleichbare Genauigkeit und benötigen weniger Material.

Schlüsselwörter

Matrix-assistierte Laser-Desorption-Ionisations-Massenspektrometrie Morbus Hodgkin Prostatakarzinom Proteomik Bildgebende Massenspektrometrie 

Mass spectrometry—applications in pathology

Abstract

Background

Currently, more complex and extensive diagnostic pathology work-up of sometimes only limited sample material is necessary to ensure optimal patient treatment. This often includes genomic analyses. However, dynamic changes within an organism or tumor can be better reflected at the protein level. Therefore, proteomic technologies would seem to be the solution.

Objectives

To evaluate the application of different proteomic techniques to analyze body fluids and tissue samples with regards to implementation in diagnostics.

Materials and Methods

All studies utilized mass spectrometry-based methods in order to achieve differentiation of a number of different patient groups in various diseases.

Results

Whereas classical proteomic methods are particularly suitable for analyzing serum samples in order to diagnose bladder cancer or chronic hepatitis C, tissue analyses would require prior tissue lyses, thus erasing possible information to be obtained from histology. Imaging mass spectrometry offers a solution as it allows for the analysis of an intact tissue section. Possible applications and the added benefit of this method could be shown using various examples of tumors (prostate cancer, Hodgkin’s lymphoma, cervical cancer, and different types of adenocarcinomas).

Conclusions

Mass spectrometry-based technologies allow diagnostic confirmation with high sensitivity and specificity. In comparison to routine diagnostic approaches, results can be achieved faster, using less sample material, and with comparable accuracy.

Keywords

Matrix-assisted laser desorption-ionization mass spectrometry Hodgkin disease Prostate cancer Proteomics Mass spectrometry imaging 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

K. Schwamborn gibt an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden vom Autor keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

The supplement containing this article is not sponsored by industry.

Literatur

  1. 1.
    Anderson NL, Anderson NG (1998) Proteome and proteomics: new technologies, new concepts, and new words. Electrophoresis 19:1853–1861PubMedCrossRefGoogle Scholar
  2. 2.
    Ball HJ, Hunt NH (2004) Needle in a haystack: microdissecting the proteome of a tissue. Amino Acids 27:1–7PubMedCrossRefGoogle Scholar
  3. 3.
    Birley HD (1995) Human papillomaviruses, cervical cancer and the developing world. Ann Trop Med Parasitol 89:453–463PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Bocking A, Pomjansky N, Buckstegge B et al (2009) Immunocytochemical identification of carcinomas of unknown primaries on fine-needle-aspiration-biopsies. Pathologe 30(Suppl 2):158–160PubMedCrossRefGoogle Scholar
  5. 5.
    Caprioli RM, Farmer TB, Gile J (1997) Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Anal Chem 69:4751–4760PubMedCrossRefGoogle Scholar
  6. 6.
    Celis JE, Gromov P (2003) Proteomics in translational cancer research: toward an integrated approach. Cancer Cell 3:9–15PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Cooper D, Schermer A, Sun TT (1985) Classification of human epithelia and their neoplasms using monoclonal antibodies to keratins: strategies, applications, and limitations. Lab Invest 52:243–256PubMedGoogle Scholar
  8. 8.
    Fenn JB, Mann M, Meng CK et al (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246:64–71PubMedCrossRefGoogle Scholar
  9. 9.
    Fetsch PA, Abati A (2001) Immunocytochemistry in effusion cytology: a contemporary review. Cancer 93:293–308PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Gressner OA, Weiskirchen R, Gressner AM (2007) Biomarkers of hepatic fibrosis, fibrogenesis and genetic pre-disposition pending between fiction and reality. J Cell Mol Med 11:1031–1051PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Groseclose MR, Massion PP, Chaurand P et al (2008) High-throughput proteomic analysis of formalin-fixed paraffin-embedded tissue microarrays using MALDI imaging mass spectrometry. Proteomics 8:3715–3724PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Hanash S (2003) Disease proteomics. Nature 422:226–232PubMedCrossRefGoogle Scholar
  13. 13.
    Henkel C, Schwamborn K, Zimmermann HW et al (2011) From proteomic multimarker profiling to interesting proteins: thymosin-beta(4) and kininogen‑1 as new potential biomarkers for inflammatory hepatic lesions. J Cell Mol Med 15:2176–2188PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Herman MP, Svatek RS, Lotan Y et al (2008) Urine-based biomarkers for the early detection and surveillance of non-muscle invasive bladder cancer. Minerva Urol Nefrol 60:217–235PubMedPubMedCentralGoogle Scholar
  15. 15.
    Karas M, Bachmann D, Hillenkamp F (1985) Influence of the wavelength in high-irradiance ultraviolet laser desorption mass spectrometry of organic molecules. Anal Chem 57:2935–2939CrossRefGoogle Scholar
  16. 16.
    Karas M, Hillenkamp F (1988) Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem 60:2299–2301PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Lakes J, Arsov C (2019) PSA screening and molecular markers. Urologe A 58(5):486–493.  https://doi.org/10.1007/s00120-019-0900-y CrossRefPubMedGoogle Scholar
  18. 18.
    Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Longatto Filho A, Alves VA, Kanamura CT et al (2002) Identification of the primary site of metastatic adenocarcinoma in serous effusions. Value of an immunocytochemical panel added to the clinical arsenal. Acta Cytol 46:651–658PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Lottspeich F (2012) Bioanalytik. Springer, HeidelbergGoogle Scholar
  21. 21.
    Lottspeich F, Engels JW (2018) Bioanalytics analytical methods and concepts in biochemisrty and molecular biology. Wiley, WeinheimGoogle Scholar
  22. 22.
    Lozano MD, Panizo A, Toledo GR et al (2001) Immunocytochemistry in the differential diagnosis of serous effusions: a comparative evaluation of eight monoclonal antibodies in Papanicolaou stained smears. Cancer 93:68–72PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Marquardt K, Ziemke P, Neumann K (2019) Three-tiered versus two-tiered classification of squamous dysplasia in cervical cytology: results of a follow-up study. Acta Cytol 63:44–49PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Mottok A, Steidl C (2018) Biology of classical Hodgkin lymphoma: implications for prognosis and novel therapies. Blood 131:1654–1665PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Musselwhite LW, Oliveira CM, Kwaramba T et al (2016) Racial/ethnic disparities in cervical cancer screening and outcomes. Acta Cytol 60:518–526PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Mustafa D, Kros JM, Luider T (2008) Combining laser capture microdissection and proteomics techniques. Methods Mol Biol 428:159–178PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Porta Siegel T, Hamm G, Bunch J et al (2018) Mass spectrometry imaging and integration with other imaging modalities for greater molecular understanding of biological tissues. Mol Imaging Biol 20:888–901PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Pottier C, Kriegsmann M, Alberts D et al (2019) Microproteomic profiling of high-grade squamous intraepithelial lesion of the cervix: insight into biological mechanisms of dysplasia and new potential diagnostic markers. Proteomics Clin Appl 13:e1800052PubMedCrossRefGoogle Scholar
  29. 29.
    Poynard T, Mchutchison J, Manns M et al (2003) Biochemical surrogate markers of liver fibrosis and activity in a randomized trial of peginterferon alfa-2b and ribavirin. Hepatology 38:481–492PubMedCrossRefGoogle Scholar
  30. 30.
    Prasad V (2016) Perspective: the precision-oncology illusion. Nature 537:S63PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Ratziu V, Charlotte F, Heurtier A et al (2005) Sampling variability of liver biopsy in nonalcoholic fatty liver disease. Gastroenterology 128:1898–1906CrossRefGoogle Scholar
  32. 32.
    Regev A, Berho M, Jeffers LJ et al (2002) Sampling error and intraobserver variation in liver biopsy in patients with chronic HCV infection. Am J Gastroenterol 97:2614–2618PubMedCrossRefGoogle Scholar
  33. 33.
    Rockey DC, Bissell DM (2006) Noninvasive measures of liver fibrosis. Hepatology 43:S113–S120PubMedCrossRefGoogle Scholar
  34. 34.
    Rolland DCM, Lim MS, Elenitoba-Johnson KSJ (2019) Mass spectrometry and proteomics in hematology. Semin Hematol 56:52–57PubMedCrossRefGoogle Scholar
  35. 35.
    Schwamborn K, Caprioli RM (2010) MALDI imaging mass spectrometry—painting molecular pictures. Mol Oncol 4:529–538PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Schwamborn K, Caprioli RM (2010) Molecular imaging by mass spectrometry—looking beyond classical histology. Nat Rev Cancer 10:639–646PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Schwamborn K, Gaisa NT, Henkel C (2010) Tissue and serum proteomic profiling for diagnostic and prognostic bladder cancer biomarkers. Expert Rev Proteomics 7:897–906PubMedCrossRefGoogle Scholar
  38. 38.
    Schwamborn K, Krieg RC, Grosse J et al (2009) Serum proteomic profiling in patients with bladder cancer. Eur Urol 56:989–996PubMedCrossRefGoogle Scholar
  39. 39.
    Schwamborn K, Krieg RC, Jirak P et al (2010) Application of MALDI imaging for the diagnosis of classical Hodgkin lymphoma. J Cancer Res Clin Oncol 136:1651–1655PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Schwamborn K, Krieg RC, Reska M et al (2007) Identifying prostate carcinoma by MALDI-Imaging. Int J Mol Med 20:155–159PubMedPubMedCentralGoogle Scholar
  41. 41.
    Schwamborn K, Krieg RC, Uhlig S et al (2011) MALDI imaging as a specific diagnostic tool for routine cervical cytology specimens. Int J Mol Med 27:417–421PubMedPubMedCentralGoogle Scholar
  42. 42.
    Schwamborn K, Kriegsmann M, Weichert W (2017) MALDI imaging mass spectrometry—from bench to bedside. Biochim Biophys Acta Proteins Proteom 1865:776–783PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Schwamborn K, Weirich G, Steiger K et al (2019) Discerning the primary carcinoma in malignant peritoneal and pleural effusions using imaging mass spectrometry—a feasibility study. Proteomics Clin Appl 13:e1800064PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Song C, Chen H, Song C (2019) Research status and progress of the RNA or protein biomarkers for prostate cancer. Onco Targets Ther 12:2123–2136PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Tanaka K, Waki H, Ido Y et al (1988) Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 2:151–153CrossRefGoogle Scholar
  46. 46.
    Thongboonkerd V, Klein JB (2004) Proteomics in nephrology. Karger, Basel; New YorkGoogle Scholar
  47. 47.
    Van Osch FHM, Nekeman D, Aaronson NK et al (2019) Patients choose certainty over burden in bladder cancer surveillance. World J Urol.  https://doi.org/10.1007/s00345-019-02728-4 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Vrooman OP, Witjes JA (2008) Urinary markers in bladder cancer. Eur Urol 53:909–916PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Wang HW, Balakrishna JP, Pittaluga S et al (2019) Diagnosis of Hodgkin lymphoma in the modern era. Br J Haematol 184:45–59PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Wilkins MR, Sanchez JC, Gooley AA et al (1996) Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev 13:19–50PubMedCrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Institut für Allgemeine Pathologie und Pathologische AnatomieTechnische Universität MünchenMünchenDeutschland

Personalised recommendations