Advertisement

Der Pathologe

, Volume 39, Supplement 2, pp 193–198 | Cite as

Liquid Biopsy im nicht-kleinzelligen Lungenkarzinom

Die blutbasierte Analyse der ctDNA-Methylierung
  • H. SchulzEmail author
  • M. Tator
  • J. Spillner
  • M. Dreher
  • R. Knüchel-Clarke
  • V. Kloten
  • E. Dahl
Referate Preisträger: Promotionspreis
  • 141 Downloads

Zusammenfassung

Hintergrund

Einsatz der Liquid Biopsy als minimalinvasive Methode für die Nachsorgediagnostik des nicht-kleinzelligen Lungenkarzinoms (NSCLC).

Fragestellung

Systematische Suche nach neuen blutbasierten DNA-Methylierungsmarkern zur Differenzierung von NSCLC-Patienten und Patienten ohne maligne Erkrankung.

Material und Methode

Quantitative Analyse der DNA-Methylierung in der Promotorregion potenzieller Biomarkergene aus cfDNA (Plasma) mittels Pyrosequenzierung.

Ergebnisse

Die Untersuchung der cfDNA-Hypermethylierung aus Plasma ergab für den Biomarker CFTR eine signifikant höhere Methylierung bei NSCLC-Patienten verglichen mit allen Kontrollen und der NSCLC-Patientengruppe nach kurativer Behandlung eines primären Lungenkarzinoms. Eine ROC-Analyse der am besten diskriminierenden CpGs des CFTR-Promotors (CpG1-2-4) erreichte eine Sensitivität von 52 % bei einer Spezifität von 90 % im Vergleich von NSCLC-Patienten und Post-NSCLC-Patienten (AUC = 0,69, p-Wert < 0,05).

Schlussfolgerung

Die Promotor Hypermethylierung des potenziellen Biomarkers CFTR zeigt eine gute Tendenz zur Differenzierung von NSCLC-Patienten und Post-NSCLC-Patienten und sollte weiter evaluiert werden.

Schlüsselwörter

Liquid biopsy Nicht-kleinzelliges Lungenkarzinom DNA-Methylierung Genetische Promotorregion DNA-Sequenzanalyse 

Liquid biopsy in human non-small-cell lung cancer

Blood-based analysis of ctDNA methylation

Abstract

Background

Use of liquid biopsy for minimal invasive follow-up diagnostics of non-small-cell lung carcinomas (NSCLCs).

Objectives

Systematic search for new putative blood-based hypermethylation biomarkers to discriminate NSCLC patients from patients without a malign disease.

Methods

Quantitative analysis of gene promoter DNA methylation of potential biomarkers from cfDNA (plasma) with pyrosequencing.

Results

cfDNA hypermethylation in plasma confirmed significant higher methylation frequencies of the candidate gene CFTR of the NSCLC patients compared to the combined control groups and to NSCLC patients after curative therapy of primary NSCLC (post-NSCLC). ROC-analysis of the best discriminatory CpGs of the CFTR promotor (CpG1-2-4) revealed a sensitivity of 52% in NSCLC patients and a specificity of 90% in the post-NSCLC group (AUC: 0.69; p < 0.05).

Conclusions

Promotor hypermethylation of the potential biomarker CFTR shows a discriminatory potential for differentiation of NSCLC patients to patients without a malign disease and should further be investigated.

Keywords

Liquid biopsy Non-small-cell lung carcinoma DNA methylation Genetic promoter regions DNA sequence analysis 

Notes

Danksagung

Die Autorin dankt Frau Dr. rer. nat. Vera Kloten und Herrn Professor Dr. rer. nat. Edgar Dahl für die Betreuung der Promotionsarbeit.

Einhaltung ethischer Richtlinien

Interessenkonflikt

H. Schulz, M. Tator, J. Spillner, M. Dreher, R. Knüchel-Clarke, V. Kloten und E. Dahl geben an, dass kein Interessenkonflikt besteht.

Alle beschriebenen Untersuchungen am Menschen wurden mit Zustimmung der zuständigen Ethik-Kommission, im Einklang mit nationalem Recht sowie gemäß der Deklaration von Helsinki von 1975 (in der aktuellen, überarbeiteten Fassung) durchgeführt. Von allen beteiligten Patienten liegt eine Einverständniserklärung vor.

The supplement containing this article is not sponsored by industry.

Literatur

  1. 1.
    Diaz LA Jr et al (2012) The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 486(7404):537–540PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Mandel P (1948) Les acides nucleiques du plasma sanguin chez l’homme. Cr Acad Sci Paris 142:241–243Google Scholar
  3. 3.
    Diehl F et al (2005) Detection and quantification of mutations in the plasma of patients with colorectal tumors. Proc Natl Acad Sci USA 102(45):16368–16373PubMedCrossRefGoogle Scholar
  4. 4.
    Stroun M et al (1989) Neoplastic characteristics of the DNA found in the plasma of cancer patients. Oncology 46(5):318–322PubMedCrossRefGoogle Scholar
  5. 5.
    Diehl F et al (2008) Circulating mutant DNA to assess tumor dynamics. Nat Med 14(9):985–990PubMedCrossRefGoogle Scholar
  6. 6.
    Stroun M et al (2001) About the possible origin and mechanism of circulating DNA: Apoptosis and active DNA release. Clin Chim Acta 313(1):139–142PubMedCrossRefGoogle Scholar
  7. 7.
    Norton S et al (2013) A stabilizing reagent prevents cell-free DNA contamination by cellular DNA in plasma during blood sample storage and shipping as determined by digital PCR. Clin Biochem 46(15):1561–1565PubMedCrossRefGoogle Scholar
  8. 8.
    Baylin SB, Jones PA (2011) A decade of exploring the cancer epigenome—biological and translational implications. Nat Rev Cancer 11(10):726–734PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Baylin SB, Herman JG (2000) DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet 16(4):168–174PubMedCrossRefGoogle Scholar
  10. 10.
    Esteller M, Herman JG (2002) Cancer as an epigenetic disease: DNA methylation and chromatin alterations in human tumours. J Pathol 196(1):1–7PubMedCrossRefGoogle Scholar
  11. 11.
    Bach PB et al (2012) Benefits and harms of CT screening for lung cancer: a systematic review. JAMA 307(22):2418–2429PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Wender R et al (2013) American Cancer Society lung cancer screening guidelines. CA Cancer J Clin 63(2):106–117CrossRefGoogle Scholar
  13. 13.
    Goeckenjan G et al (2011) Prevention, diagnosis, therapy, and follow-up of lung cancer. Pneumologie 65(01):39–59PubMedCrossRefGoogle Scholar
  14. 14.
    Aberle DR et al (2013) Results of the two incidence screenings in the National Lung Screening Trial. N Engl J Med 369(10):920–931PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Patz EF et al (2014) Overdiagnosis in low-dose computed tomography screening for lung cancer. JAMA Intern Med 174(2):269–274PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Kozower BD et al (2010) STS database risk models: predictors of mortality and major morbidity for lung cancer resection. Ann Thorac Surg 90(3):875–883PubMedCrossRefGoogle Scholar
  17. 17.
    Balak MN et al (2006) Novel D761Y and common secondary T790M mutations in epidermal growth factor receptor-mutant lung adenocarcinomas with acquired resistance to kinase inhibitors. Clin Cancer Res 12(21):6494–6501PubMedCrossRefGoogle Scholar
  18. 18.
    Yu H et al (2013) Analysis of Mechanisms of Acquired Resistance to EGFR TKI therapy in 155 patients with EGFR-mutant Lung Cancers. Clin Cancer Res.  https://doi.org/10.1158/1078-0432.CCR-12-2246 PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Kimura H et al (2006) Detection of epidermal growth factor receptor mutations in serum as a predictor of the response to gefitinib in patients with non-small-cell lung cancer. Clin Cancer Res 12(13):3915–3921PubMedCrossRefGoogle Scholar
  20. 20.
    AWMF, D. Krebshilfe, D. Krebsgesellschaft (2018) S3-Leitlinie: Prävention, Diagnostik, Therapie und Nachsorge des Lungenkarzinoms. www.awmf.org Google Scholar
  21. 21.
    Oxnard GR et al (2014) Noninvasive detection of response and resistance in EGFR-mutant lung cancer using quantitative next-generation genotyping of cell-free plasma DNA. Clin Cancer Res 20(6):1698–1705PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Frangioni JV (2008) New technologies for human cancer imaging. J Clin Oncol 26(24):4012–4021PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Berlin K, Ballhause M, Cardon K (2004) Bisulfite conversion of DNA. Google Patents, https://patents.google.com/patent/US20060134643A1/en
  24. 24.
    Delaney C, Garg SK, Yung R (2015) Analysis of DNA Methylation by Pyrosequencing. In: Shaw A (Hrsg) Immunosenescence. Methods in Molecular Biology, Bd. 1343. Humana Press, New York, S 249–264Google Scholar
  25. 25.
    Nelder JA, Baker RJ (2004) Generalized linear models. Encyclopedia of statistical sciences, Bd. 4Google Scholar
  26. 26.
    Hochberg Y (1988) A sharper Bonferroni procedure for multiple tests of significance. Biometrika 75(4):800–802CrossRefGoogle Scholar
  27. 27.
    Son JW et al (2011) Promoter hypermethylation of the CFTR gene and clinical/pathological features associated with non-small cell lung cancer. Respirology 16(8):1203–1209PubMedCrossRefGoogle Scholar
  28. 28.
    Kaedbey R et al (2015) Noninvasive diagnosis of actionable mutations by deep sequencing of circulating cell free DNA (cfDNA) in multiple myeloma (MM). Clin Lymphoma Myeloma Leuk 15:e45–e46CrossRefGoogle Scholar
  29. 29.
    Paweletz CP et al (2016) Bias-corrected targeted next-generation sequencing for rapid, multiplexed detection of actionable alterations in cell-free DNA from advanced lung cancer patients. Clin Cancer Res 22(4):915–922PubMedCrossRefGoogle Scholar
  30. 30.
    Day E, Dear PH, McCaughan F (2013) Digital PCR strategies in the development and analysis of molecular biomarkers for personalized medicine. Methods 59(1):101–107PubMedCrossRefGoogle Scholar
  31. 31.
    Wiencke JK et al (2014) A comparison of DNA methylation specific droplet digital PCR (ddPCR) and real time qPCR with flow cytometry in characterizing human T cells in peripheral blood. Epigenetics 9(10):1360–1365PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  • H. Schulz
    • 1
    Email author
  • M. Tator
    • 1
  • J. Spillner
    • 2
  • M. Dreher
    • 3
  • R. Knüchel-Clarke
    • 1
  • V. Kloten
    • 1
  • E. Dahl
    • 1
    • 4
  1. 1.Arbeitsgruppe Molekulare Onkologie, Institut für PathologieUniklinik RWTH AachenAachenDeutschland
  2. 2.Klinik für Thorax‑, Herz- und GefäßchirurgieUniklinik RWTH AachenAachenDeutschland
  3. 3.Klinik für Pneumologie und Internistische IntensivmedizinUniklinik RWTH AachenAachenDeutschland
  4. 4.RWTH zentralisierte Biomaterialbank (RWTH cBMB) am Institut für PathologieUniklinik RWTH AachenAachenDeutschland

Personalised recommendations