Cu(II) sorption performance of silane-modified poly(NaSS-co-MA-co-AAm) and poly(NaSS-co-MA-co-NIPAM) terpolymers

  • Ahmet OkudanEmail author
  • Emre Ozviran
  • Gulsin Arslan
  • Idris Sargin
Original Paper


This study reports the adsorption of Cu(II) ion by 3-(2-aminoethylamino) propyldimethoxymethylsilane-modified terpolymers. Water-soluble poly(sodium 4-styrenesulfonate-co-maleic anhydride-co-acrylamide) [poly(NaSS-co-MA-co-AAm)] and poly(sodium 4-styrenesulfonate-co-maleic anhydride-co–N-isopropylacrylamide) [poly(NaSS-co-MA-co-NIPAM)] terpolymers were synthesized and then modified with silane to make them water-insoluble. 1H-NMR and FT-IR spectroscopy was used to study the chemical composition of the terpolymers. Also, acid number and viscosity of the polymers were determined. Cu(II) ion adsorption parameters (adsorbent dosage, contact time, pH and metal ion concentration) were studied, and the equilibrium data were evaluated using adsorption isotherm models; Freundlich isotherm gave the best fit. Cu(II) adsorption performance of poly(NaSS-co-MA-co-AAm) and poly(NaSS-co-MA-co-NIPAM) terpolymers was found to be 53.42 and 43.10%, respectively. The terpolymers can be used for removal of Cu(II) from aqueous media.


Adsorption Silane modification Water treatment Terpolymer 



The authors are thankful to Selcuk University Research Foundation (project number: BAP-14201016) for funding the study.

Supplementary material

289_2019_3025_MOESM1_ESM.docx (608 kb)
Supplementary file1 (DOCX 607 kb)


  1. 1.
    Zhao G, Huang X, Tang Z, Huang Q, Niu F, Wang X (2018) Polymer-based nanocomposites for heavy metal ions removal from aqueous solution: a review. Polym Chem Uk 9(26):3562–3582CrossRefGoogle Scholar
  2. 2.
    Wen J, Fang Y, Zeng G (2018) Progress and prospect of adsorptive removal of heavy metal ions from aqueous solution using metal–organic frameworks: a review of studies from the last decade. Chemosphere 201:627–643CrossRefGoogle Scholar
  3. 3.
    Bilal M, Shah JA, Ashfaq T, Gardazi SMH, Tahir AA, Pervez A, Haroon H, Mahmood Q (2013) Waste biomass adsorbents for copper removal from industrial wastewater—a review. J Hazard Mater 263:322–333CrossRefGoogle Scholar
  4. 4.
    Prasad M, Freitas H (2000) Removal of toxic metals from solution by leaf, stem and root phytomass of Quercus ilex L. (holly oak). Environ Pollut 110(2):277–283CrossRefGoogle Scholar
  5. 5.
    Al-Saydeh SA, El-Naas MH, Zaidi SJ (2017) Copper removal from industrial wastewater: A comprehensive review. J Ind Eng Chem 56:35–44CrossRefGoogle Scholar
  6. 6.
    A. Okudan, B.E. Ataoglu, O. Sengoz, G. Arslan, Cu(II) Sorption Performance of Novel Chitosan/Ter-(vinyl pivalate-maleic anhydride-N-tert-butylacrylamide) Microcapsules, J Polym Environ (2019) 1–10.Google Scholar
  7. 7.
    Akbari A, Arsalani N, Eftekhari-Sis B, Amini M, Gohari G, Jabbari E (2019) Cube-octameric silsesquioxane (POSS)-capped magnetic iron oxide nanoparticles for the efficient removal of methylene blue. Front Chem Sci Eng 13(3):563–573CrossRefGoogle Scholar
  8. 8.
    Eftekhari-Sis B, Akbari A, Motlagh PY, Bahrami Z, Arsalani N (2018) Dye adsorption on cubic polyhedral oligomeric silsesquioxane-Based poly (acrylamide-co-itaconic acid) hybrid nanocomposites: kinetic, thermodynamic and isotherms studies. J Inorg Organomet Polym 28(5):1728–1738CrossRefGoogle Scholar
  9. 9.
    Bahrami Z, Akbari A, Eftekhari-Sis B (2019) Double network hydrogel of sodium alginate/polyacrylamide cross-linked with POSS: Swelling, dye removal and mechanical properties. Int J Biol Macromol 129:187–197CrossRefGoogle Scholar
  10. 10.
    Brusseau SGN, D’Agosto F, Magnet S, Couvreur L, Chamignon C, Charleux B (2011) Nitroxide-Mediated copolymerization of methacrylic acid and sodium 4-styrenesulfonate in water solution and one-pot synthesis of amphiphilic block copolymer nanoparticles. Macromolecules 44(14):5590–5598CrossRefGoogle Scholar
  11. 11.
    Deng H-Y, Xu Y-Y, Zhu B-K, Wei X-Z, Liu F, Cui Z-Y (2008) Polyelectrolyte membranes prepared by dynamic self-assembly of poly (4-styrenesulfonic acid-co-maleic acid) sodium salt (PSSMA) for nanofiltration (I). J Membr Sci 323(1):125–133CrossRefGoogle Scholar
  12. 12.
    Rivas B, Seguel G, Geckeler K (2002) Synthesis, characterization, and properties of polychelates of poly (styrene sulfonic acid-co-maleic acid) with Co(II), Cu(II), Ni(II), and Zn (II). J Appl Polym Sci 85(12):2546–2551CrossRefGoogle Scholar
  13. 13.
    Rivas BL, Munoz C (2009) Synthesis and metal ion adsorption properties of poly (4-sodium styrene sulfonate-co-acrylic acid). J Appl Polym Sci 114(3):1587–1592CrossRefGoogle Scholar
  14. 14.
    Matsumoto K, Hasegawa H, Matsuoka H (2004) Synthesis of sodium-polystyrenesulfonate-grafted nanoparticles by core-cross-linking of block copolymer micelles. Tetrahedron 60(34):7197–7204CrossRefGoogle Scholar
  15. 15.
    Ghosh SK, De P, Khastgir D, De S (2000) Ionic thermoplastic elastomer based on the zinc salt of sulfonated maleated EPDM rubber. I. Effect of zinc stearate on melt‐flow behavior, and dynamic mechanical, dielectric, and physical properties. J Appl Polym Sci 78(4):743–750CrossRefGoogle Scholar
  16. 16.
    Luo X, Goh SH, Lee SY, Huan CHA (1999) Spectroscopic studies of interactions in complexes of poly (1-vinylimidazole) with poly (styrenesulfonic acid) or the zinc salt of poly (styrenesulfonate). Macromol Chem Phys 200(4):874–880CrossRefGoogle Scholar
  17. 17.
    Hasanzadeh R, Najafi Moghadam P, Samadi N (2013) Synthesis and application of modified poly (styrene‐alt‐maleic anhydride) networks as a nano chelating resin for uptake of heavy metal ions. Polym Adv Technol 24(1):34–41CrossRefGoogle Scholar
  18. 18.
    Hasanzadeh R, Moghadam PN, Samadi N, Asri-Rezaei S (2013) Removal of heavy-metal ions from aqueous solution with nanochelating resins based on poly (styrene-alt-maleic anhydride). J Appl Polym Sci 127(4):2875–2883CrossRefGoogle Scholar
  19. 19.
    Abd El-Rehim HA, Hegazy EA, El-Hag Ali A (2000) Selective removal of some heavy metal ions from aqueous solution using treated polyethylene-g-styrene/maleic anhydride membranes. React Funct Polym 43(1):105–116CrossRefGoogle Scholar
  20. 20.
    Kawaguchi S, Kitano T, Ito K (1991) Infrared and ultraviolet spectroscopic studies on intramolecular hydrogen bonding in an alternating copolymer of isobutylene and maleic acid. Macromolecules 24(22):6030–6036CrossRefGoogle Scholar
  21. 21.
    Samadi N, Ansari R, Khodavirdilo B (2017) Removal of Copper ions from aqueous solutions using polymer derivations of poly (styrene-alt-maleic anhydride). Egypt J Pet 26(2):375–389CrossRefGoogle Scholar
  22. 22.
    Rivas BL, Seguel GV, Geckeler KE (2001) Poly(styrene-alt-maleic acid)–metal complexes with divalent metal ions. synthesis, characterization, and physical properties. J Appl Polym Sci 81(6):1310–1315CrossRefGoogle Scholar
  23. 23.
    Rivas BL, Seguel GV, Ancatripai C (2000) Polymer-metal complexes: Synthesis, characterization, and properties of poly(maleic acid) metal complexes with Cu(II), Co(II), Ni(II), and Zn(II). Polym Bull 44(5):445–452CrossRefGoogle Scholar
  24. 24.
    Chen JJ, Ahmad AL, Ooi BS (2013) Poly(N-isopropylacrylamide-co-acrylic acid) hydrogels for copper ion adsorption: equilibrium isotherms, kinetic and thermodynamic studies. J Environ Chem Eng 1(3):339–348CrossRefGoogle Scholar
  25. 25.
    Chauhan GS, Kumar S, Kumari A, Sharma R (2003) Study on the synthesis, characterization, and sorption of some metal ions on gelatin- and acrylamide-based hydrogels. J Appl Polym Sci 90(14):3856–3871CrossRefGoogle Scholar
  26. 26.
    Chen JJ, Ahmad AL, Ooi BS (2014) Thermo-responsive properties of poly(N-isopropylacrylamide-co-acrylic acid) hydrogel and its effect on copper ion removal and fouling of polymer-enhanced ultrafiltration. J Membrane Sci 469:73–79CrossRefGoogle Scholar
  27. 27.
    Ju X-J, Zhang S-B, Zhou M-Y, Xie R, Yang L, Chu L-Y (2009) Novel heavy-metal adsorption material: ion-recognition P(NIPAM-co-BCAm) hydrogels for removal of lead(II) ions. J Hazard Mater 167(1):114–118CrossRefGoogle Scholar
  28. 28.
    Morales DV, Rivas BL (2014) Poly (Acrylamide-co-Styrene Sodium Sulfonate) and Poly (2-Acrylamide-2-Methyl-1-Propanesulfonic Acid-co-Acrylic Acid) Resins with Removal Properties for Hg (II), Pb (II), Cd (II), and Zn (II). J Chil Chem Soc 59(2):2420–2426CrossRefGoogle Scholar
  29. 29.
    Klumperman B (2010) Mechanistic considerations on styrene–maleic anhydride copolymerization reactions. Polym Chem-Uk 1(5):558–562CrossRefGoogle Scholar
  30. 30.
    Tsuchida E, Tomono T (1971) Discussion on the mechanism of alternating copolymerization of styrene and maleic anhydride. Die Makromolekulare Chemie Macromol Chem Phys 141(1):265–298CrossRefGoogle Scholar
  31. 31.
    Kim BK, Park SY, Park SJ (1991) Morphological, thermal and rheological properties of blends: Polyethylene/nylon-6, polyethylene/nylon-6/(maleic anhydride-g-polyethylene) and (maleic anhydride-g-polyethylene)/nylon-6. Eur Polymer J 27(4–5):349–354CrossRefGoogle Scholar
  32. 32.
    Lucchesi C, Secrets P, Hirn C (1975) Standart method of chemical analysis. Krieger Publishing Company, New YorkGoogle Scholar
  33. 33.
    Kocak N, Sahin M, Arslan G, Ucan HI (2012) Synthesis of crosslinked chitosan possessing schiff base and its use in metal removal. J Inorg Organomet Polym 22(1):166–177CrossRefGoogle Scholar
  34. 34.
    Travas-Sejdic J, Easteal A (2000) Study of free-radical copolymerization of acrylamide with 2-acrylamido-2-methyl-1-propane sulphonic acid. J Appl Polym Sci 75(5):619–628CrossRefGoogle Scholar
  35. 35.
    Genies C, Mercier R, Sillion B, Petiaud R, Cornet N, Gebel G, Pineri M (2001) Stability study of sulfonated phthalic and naphthalenic polyimide structures in aqueous medium. Polymer 42(12):5097–5105CrossRefGoogle Scholar
  36. 36.
    Akbari A, Arsalani N (2016) Organic–inorganic incompletely condensed polyhedral oligomeric silsesquioxane-based nanohybrid: synthesis, characterization and dye removal properties. Polym Plastics Technol Eng 55(15):1586–1594CrossRefGoogle Scholar
  37. 37.
    Rivas BL, Seguel GV, Geckeler KE (2002) Synthesis, characterization, and properties of polychelates of poly(styrene sulfonic acid-co-maleic acid) with Co(II), Cu(II), Ni(II), and Zn(II). J Appl Polym Sci 85(12):2546–2551CrossRefGoogle Scholar
  38. 38.
    Deng H, Xu Y, Zhu B, Wei X, Liu F, Cui Z (2008) Polyelectrolyte membranes prepared by dynamic self-assembly of poly (4-styrenesulfonic acid-co-maleic acid) sodium salt (PSSMA) for nanofiltration (I). J Membr Sci 323(1):125–133CrossRefGoogle Scholar
  39. 39.
    Zhu Z, Yang X, He L-N, Li W (2012) Adsorption of Hg 2+ from aqueous solution on functionalized MCM-41. RSC Adv 2(3):1088–1095CrossRefGoogle Scholar
  40. 40.
    Çelik S (2011) Poli (4-vinilpiridin) homopolimeri, maleik anhidrit ve n-izopropil akrilamid ile kopolimer ve terpolimerlerinin sentezi, karakterizasyonu ve özelliklerinin incelenmesi. Fen Bilimleri Enstitüsü, Gazi Üniversitesi AnkaraGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ahmet Okudan
    • 1
    Email author
  • Emre Ozviran
    • 1
  • Gulsin Arslan
    • 2
  • Idris Sargin
    • 2
  1. 1.Department of Chemistry, Faculty of ScienceSelcuk UniversityKonyaTurkey
  2. 2.Department of Biochemistry, Faculty of ScienceSelcuk UniversityKonyaTurkey

Personalised recommendations