Synthesis and characterization of chitosan-g-poly(AMPS-co-AA-co-AM)/ground basalt composite hydrogel: antibacterial activity

  • Yomen AtassiEmail author
  • Majd Said
  • Mohammad Tally
  • Lamia Kouba
Original Paper


A novel mineral-based superabsorbent hydrogel composite, poly (2-acrylamido-2-methylpropanesulfonic acid-co-acrylic acid-co-acrylamide)/ground basalt: CS-g-P(AMPS-co-AA-co-AM)/BST/BST, is prepared under microwave irradiation. The structural and morphological characterization of hydrogel is assessed using FTIR spectroscopy, X-ray diffractometry and scanning electron microscopy. The thermal stability of the hydrogel composite is explored using thermogravimetric analysis. The swelling kinetics of the hydrogel and the influence of the pH and the ionic strength of the surrounding solution on water absorbing capacity are also studied. The antibacterial activity of the superabsorbent composite against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) assayed by the inhibitory zone tests has shown that the introduction of ground basalt enhances the inhibition of the bacteria growth by simple contact with the hydrogel. To the authors’ knowledge, there have been no published scientific works that examine the synergistic bactericidal potency of combining ground basalt and chitosan-based hydrogels.


Hydrogel 2-Acrylamido-2-methyl-1-propanesulfonic acid Acrylics Chitosan Basalt Antibacterial activity 



  1. 1.
    Shi Y, Xue Z, Wang X, Wang L, Wang A (2013) Removal of methylene blue from aqueous solution by sorption on lignocellulose-g-poly(acrylic acid)/montmorillonite three-dimensional cross-linked polymeric network hydrogels. Polym Bull 70:1163–1179CrossRefGoogle Scholar
  2. 2.
    Dubrovskii SA, Afanas’eva MV, Lagutina MA, Kazanskii KS (1990) Comprehensive characterization of superabsorbent polymers hydrogels. Polym Bull 24:107–113CrossRefGoogle Scholar
  3. 3.
    Ahmed EM (2015) Hydrogel: preparation, characterization, and applications. J Adv Res 6:105–121PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Bayramoglu G, Altintas B, Arica MY (2009) Adsorption kinetics and thermodynamic parameters of cationic dyes from aqueous solutions by using a new strong cation-exchange resin. Chem Eng J 152:339–346CrossRefGoogle Scholar
  5. 5.
    Zhao Y, Su H, Fang L, Tan T (2005) Superabsorbent hydrogels from poly(aspartic acid) with salt-, temperature- and pH-responsiveness properties. Polymer 46:5368–5376CrossRefGoogle Scholar
  6. 6.
    He G, Ke W, Chen X, Kong Y, Zheng H, Yin Y, Cai W (2017) Preparation and properties of quaternary ammonium chitosan-g-poly(acrylic acid-co-acrylamide) superabsorbent hydrogels. React Funct Polym 111:14–21CrossRefGoogle Scholar
  7. 7.
    Shi X, Wang W, Wang A (2011) Effect of surfactant on porosity and swelling behaviors of guar gum-g-poly(sodium acrylate-co-styrene)/attapulgite superabsorbent hydrogels. Colloid Surf B 88:279–286CrossRefGoogle Scholar
  8. 8.
    Kuang J, Yuk KY, Huh KM (2011) Polysaccharide-based superporous hydrogels with fast swelling and superabsorbent properties. Carbohydr Polym 83(1):284–290CrossRefGoogle Scholar
  9. 9.
    Zhang S, Guan Y, Fu G, Chen B, Peng F, Yao C, Sun R (2014) Organic/Inorganic superabsorbent hydrogels based on xylan and montmorillonite. J Nanomater 1(675035):1–11Google Scholar
  10. 10.
    Pourjavadi A, Amini-Fazl MS, Ayyari M (2007) Optimization of synthetic conditions CMC-g-poly (acrylic acid)/Celite composite superabsorbent by Taguchi method and determination of its absorbency under load. Express Polym Lett 1(8):488–494CrossRefGoogle Scholar
  11. 11.
    Berdous D, Ferfera-Harrar H (2016) Green synthesis of nanosilver-loaded hydrogel nanocomposites for antibacterial application. Int J Pharmacol Pharm Sci 10:543–550Google Scholar
  12. 12.
    Bouryabaf L, Moradi M, Tajik H, Badali A (2017) Biofilm removal and antimicrobial activities of agar hydrogel containing colloid nano-silver against Staphylococcus aureus and Salmonella typhimurium. J Med Bacteriol 6:51–58Google Scholar
  13. 13.
    Ghasemzadeh H, Ghanaat F (2014) Antimicrobial alginate/PVA silver nanocomposite hydrogel, synthesis and characterization. J Polym Res 21:355–368CrossRefGoogle Scholar
  14. 14.
    Nowack B, Krug HF, Height M (2011) 120 years of nanosilver history: implications for policy makers. Environ Sci Technol 45:1177–1183PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Drake PL, Hazelwood KJ (2005) Exposure-related health effects of silver and silver compounds: a review. Ann Occup Hyg 49:575–588PubMedGoogle Scholar
  16. 16.
    Ferfera-Harrar H, Aiouaz N, Dairi N, Hadj-Hamou AS (2014) Preparation of chitosan-g-poly(acrylamide)/montmorillonite superabsorbent polymer composites: studies on swelling, thermal, and antibacterial properties. J Appl Polym Sci 131:39747–39760CrossRefGoogle Scholar
  17. 17.
    Hamed I, Ozogul F, Regenstein J (2016) Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): a review. Trends Food Sci Technol 48:40–50CrossRefGoogle Scholar
  18. 18.
    Sahiner N, Sagbas S, Sahiner M, Silan C, Aktas N, Turk M (2017) Agar/chitosan IPN thin hydrogel films with antimicrobial and antioxidant properties for potential dressing applications. Curr Appl Polym Sci 1:52–62CrossRefGoogle Scholar
  19. 19.
    Chen S, Liu M, Jin S, Chen Y (2005) Synthesis and swelling properties of pH-sensitive hydrogels based on chitosan and poly(methacrylic acid) semi-interpenetrating polymer network. J Appl Polym Sci 98:1720–1726CrossRefGoogle Scholar
  20. 20.
    Pranantyo D, Xu LQ, Kang ET, Chan-Park MB (2018) Chitosan-based peptidopolysaccharides as cationic antimicrobial agents and antibacterial coatings. Biomacromol 19(6):2156–2165CrossRefGoogle Scholar
  21. 21.
    Kobasa I, Mariya M, Arsenieva L (2018) Basalt tufa as a bactericide filler for some packaging materials. Food Environ Saf J 98:81–1726Google Scholar
  22. 22.
  23. 23.
    Said M, Atassi Y, Tally M, Khatib H (2018) Environmentally friendly chitosan-g-poly(acrylic acid-co-acrylamide)/ground basalt superabsorbent composite for agricultural applications. J Polym Environ 26:3937–3948CrossRefGoogle Scholar
  24. 24.
    Zohuriaan-Mehr MJ, Kabiri K (2008) Superabsorbent polymers materials: a review. Iran Polym J 17:451–477Google Scholar
  25. 25.
    El-Sayed M, Sorour M, Abd El Moneem N, Talaat H, Shalaan H, ElMarsafy S (2011) Synthesis and properties of natural polymers-grafted-acrylamide. World Appl Sci J 13:360–368Google Scholar
  26. 26.
    Yan S, Wang T, Li X, Jian Y, Zhang K, Li G, Yin J (2017) Fabrication of injectable hydrogels based on poly(l-glutamic acid) and chitosan. RCS Adv 7:17005–17019Google Scholar
  27. 27.
    Kamal Hossen M, Alaul Azim M, Sarwaruddin Chowdhury AM, Dafader NC, Haque ME, Akter F (2008) Characterization of poly(vinyl alcohol) and poly(vinyl pyrrolidone) co-polymer blend hydrogen prepared by application of gamma radiation. Polym Plast Technol Eng 47(7):662–665CrossRefGoogle Scholar
  28. 28.
    Jeng YT (2015) Preparation and characterization of controlled release fertilizers using alginate-based superabsorbent polymer for plantations in Malaysia. Master thesis, University Tunku Abdul Rahman, MalaysiaGoogle Scholar
  29. 29.
    Rashidzadeh A, Olad A, Salari D, Reyhanitabar A (2014) On the preparation and swelling properties of hydrogel nanocomposite based on sodium alginate-g-poly(acrylic acid-co-acrylamide)/clinoptilolite and its application as slow release fertilizer. J Polym Res 21:344–359CrossRefGoogle Scholar
  30. 30.
    Huang M, Shen X, Sheng Y, Fang Y (2005) Study of graft copolymerization of N-maleamic acid-chitosan and butyl acrylate by γ-ray irradiation. Int J Biol Macromol 36:98–102PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Thakur S, Arotiba O (2018) Synthesis, characterization and adsorption studies of an acrylic acid-grafted sodium alginate- based TiO2 hydrogel nanocomposite. Adsorpt Sci Technol 36(1–2):458–477. CrossRefGoogle Scholar
  32. 32.
    Bao Y, Ma J, Li N (2011) Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly(AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel. Carbohydr Polym 84:76–82CrossRefGoogle Scholar
  33. 33.
    Nadi F, Brave C (2011) Environmentally friendly superabsorbent polymer for water conservation in agricultural field. J Soil Sci Environ Manag 2(7):206–211Google Scholar
  34. 34.
    Bulut Y, Akcay G, Elma D, Serhatli E (2009) Synthesis of clay-based superabsorbent composite and its sorption capability. J Hazard Mater 171:717–723PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    American Association of Textile Chemists and Colorists (2009) AATCC test method 147-2004. Library of Congress Catalog Number: 54-34349, pp 251–252Google Scholar
  36. 36.
    El-Shahate M, Saraya I (2014) Study physico-chemical properties of blended cements containing fixed amount of silica fume, blast furnace slag, basalt and limestone, a comparative study. Constr Build Mater 72:104–112CrossRefGoogle Scholar
  37. 37.
    Mohammad N, Tally M, Atassi Y (2017) Synthesis and swelling behavior of a novel metal-chelating superabsorbent hydrogels based on sodium alginate-g-poly(AMPS-co-AA-co-AM) obtained under microwave irradiation. Polym Bull 74(11):4453–4481CrossRefGoogle Scholar
  38. 38.
    Spagnol C, Rodrigues FHA, Neto AGVC, Pereira AGB, Fajardo AR, Radovanovic E, Rubira AF, Muniz EC (2012) Nanocomposites based on poly (acrylamide-co-acrylate) and cellulose nanowhiskers. Eur Polym J 48:454–463CrossRefGoogle Scholar
  39. 39.
    Kalaleh HA, Tally M, Atassi Y (2013) Preparation of a clay based superabsorbent polymer composite of copolymer poly(acrylate-co- acrylamide) with bentonite via microwave radiation. Res Rev Polym 4:145–150Google Scholar
  40. 40.
    Mahdavinia GR, Pourjavadi A, Hosseinzadeh H, Zohuriaan MJ (2004) Modified chitosan 4. Superabsorbent hydrogels from poly(acrylic acid-co-acrylamide) grafted chitosan with salt- and pH-responsiveness properties. Eur Polym J 40:1399–1407CrossRefGoogle Scholar
  41. 41.
    Lim DW, Yoon KJ, Ko SW (2000) Synthesis of AA-based superabsorbent interpenetrated with sodium PVA sulfate. J Appl Polym Sci 78(14):2525–2532CrossRefGoogle Scholar
  42. 42.
    Ganji F, Vasheghani-Farahani S, Vasheghani-Farahani E (2010) Theoretical description of hydrogel swelling: a review. Iran Polym J 19(5):375–390Google Scholar
  43. 43.
    Lanthong P, Kiatkamjornwong S (2006) Graft copolymerization, characterization, and degradation of cassava starch-g-acrylamide/itaconic acid superabsorbents. Carbodydr Polym 66:229–245CrossRefGoogle Scholar
  44. 44.
    Karaaslan MA, Tshabalala MA, Buischle-diller G (2010) Wood hemicelluloses/chitosan based semi: interpenetrating network hydrogels: mechanical, swelling and controlled drug release properties. BioResources 5(2):1036–1054Google Scholar
  45. 45.
    Kim BS, Yeo TY, Yun YH, Lee BK, Cho YW (2009) Facile preparation of biodegradable glycol chitosan hydrogen using divinyladipate as a crosslinker. Macromol Res 517(10):734–738CrossRefGoogle Scholar
  46. 46.
    Schott H (1992) Swelling kinetics of polymers. J Macromol Sci B 31:1–9CrossRefGoogle Scholar
  47. 47.
    Pourjavadi A, Mahdavidia GR (2006) Superabsorbency, pH-sensitivity and swelling kinetics of partially hydrolyzed chitosan-g-poly(acrylamide) hydrogels. Turk J Chem 30:595–608Google Scholar
  48. 48.
    Delcour AH (2009) Outer membrane permeability and antibiotic resistance. Biochim Biophys Acta 1794:808–816PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Haydel S, Remenih C, Williams L (2008) Broad-spectrum in vitro antibacterial activities of clay minerals against antibiotic-susceptible and antibiotic-resistant bacterial pathogens. J Antimicrob Chemother 61:353–361PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of Materials Science, Department of Applied PhysicsHigher Institute for Applied Sciences and TechnologyDamascusSyria
  2. 2.Faculty of MedicineUniversity of DamascusDamascusSyria

Personalised recommendations