Advertisement

Preparation of chitosan/gelatin composite foam with ternary solvents of dioxane/acetic acid/water and its water absorption capacity

  • Jing Peng
  • Xuejun Wang
  • Tao LouEmail author
Original Paper
  • 25 Downloads

Abstract

Green superabsorbent polymer has attracted more attention in recent years. In this study, the natural-derived polymers of chitosan and gelatin composite foam with excellent water absorption capacity (WAC) were successfully prepared with ternary solvents. The optimal process parameters are: chitosan/gelatin mass ratio of 90:10 (w/w), ternary solvents of dioxane/acetic acid/water = 2:0.8:77.2 (v/v/v), chitosan/gelatin total concentration of 1% (w/v), and freezing temperature of − 196 °C. Under the optimal conditions, the prepared chitosan/gelatin composite foam reached water absorption equilibrium less than 60 min and the WAC was 651 g/g. The composite foam also had excellent WAC in a wide range of pH, temperature, and salt concentration. It demonstrates that water absorption capacity can be improved by combining chitosan with gelatin without chemical modification and optimizing the physical microstructure by the ternary solvents system and freezing temperature. The non-toxic chitosan/gelatin composite foam with super water absorbency can find potential applications especially in the fields of hygiene and biomedicine.

Keywords

Chitosan Gelatin Ternary solvents Water absorption capacity 

Notes

Acknowledgements

Financial support from Department of Science & Technology of Shandong Province (2018GGX103049) is gratefully acknowledged.

References

  1. 1.
    Duquette D, Dumont M-J (2018) Comparative studies of chemical crosslinking reactions and applications of bio-based hydrogels. Polym Bull 76:2683–2710CrossRefGoogle Scholar
  2. 2.
    Yue Y, Wang X, Han J, Yu L, Chen J, Wu Q, Jiang J (2019) Effects of nanocellulose on sodium alginate/polyacrylamide hydrogel: mechanical properties and adsorption-desorption capacities. Carbohydr Polym 206:289–301PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Li JX, Zhang KH, Zhang MY, Fang Y, Chu XF, Xu L (2018) Fabrication of a fast-swelling superabsorbent resin by inverse suspension polymerization. J Appl Polym Sci 135:46142CrossRefGoogle Scholar
  4. 4.
    Anitha A, Sowmya S, Kumar PTS, Deepthi S, Chennazhi KP, Ehrlich H, Tsurkan M, Jayakumar R (2014) Chitin and chitosan in selected biomedical applications. Prog Polym Sci 39:1644–1667CrossRefGoogle Scholar
  5. 5.
    Fang S, Wang G, Li P, Xing R, Liu S, Qin Y, Yu H, Chen X, Li K (2018) Synthesis of chitosan derivative graft acrylic acid superabsorbent polymers and its application as water retaining agent. Int J Biol Macromol 115:754–761PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Zhang L, Zeng Y, Cheng Z (2016) Removal of heavy metal ions using chitosan and modified chitosan: a review. J Mol Liq 214:175–191CrossRefGoogle Scholar
  7. 7.
    Yang ST, Park YS (2018) Release pattern of dexamethasone after administration through an implant-mediated drug delivery device with an active plunger of super absorbent polymer. Drug Deliv Transl Res 8:702–707PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Salam A, Pawlak JJ, Venditti RA, El-tahlawy K (2010) Synthesis and characterization of starch citrate–chitosan foam with superior water and saline absorbance properties. Biomacromolecules 11:1453–1459PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Goncalves AAL, Fonseca AC, Fabela IGP, Coelho JFJ, Serra AC (2016) Synthesis and characterization of high performance superabsorbent hydrogels using bis[2-(methacryloyloxy)ethyl] phosphate as crosslinker. Express Polym Lett 10:248–258CrossRefGoogle Scholar
  10. 10.
    Kenawy E-R, Azaam MM, El-nshar EM (2018) Preparation of carboxymethyl cellulose-g-poly (acrylamide)/montmorillonite superabsorbent composite as a slow-release urea fertilizer. Polym Adv Technol 29:2072–2079CrossRefGoogle Scholar
  11. 11.
    Afzal S, Maswal M, Dar AA (2018) Rheological behavior of pH responsive composite hydrogels of chitosan and alginate: characterization and its use in encapsulation of citral. Colloid Surf B 169:99–106CrossRefGoogle Scholar
  12. 12.
    Hamed I, Özogul F, Regenstein JM (2016) Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): a review. Trends Food Sci Technol 48:40–50CrossRefGoogle Scholar
  13. 13.
    Amonpattaratkit P, Khunmanee S, Kim DH, Park H (2017) Synthesis and characterization of gelatin-based crosslinkers for the fabrication of superabsorbent hydrogels. Mater Basel 10:826–836Google Scholar
  14. 14.
    Nesovic K, Jankovic A, Kojic V, Vukasinovic-Sekulic M, Peric-Grujic A, Rhee KY, Miskovic-Stankovic V (2018) Silver/poly(vinyl alcohol)/chitosan/graphene hydrogels—synthesis, biological and physicochemical properties and silver release kinetics. Compos B Eng 154:175–185CrossRefGoogle Scholar
  15. 15.
    Lou T, Wang X, Yan X, Miao Y, Long YZ, Yin HL, Sun B, Song G (2016) Fabrication and biocompatibility of poly(l-lactic acid) and chitosan composite scaffolds with hierarchical microstructures. Mater Sci Eng C 64:341–345CrossRefGoogle Scholar
  16. 16.
    Chylinska M, Kaczmarek H, Burkowska-But A (2019) Preparation and characteristics of antibacterial chitosan films modified with N-halamine for biomedical application. Colloid Surf B 176:379–386CrossRefGoogle Scholar
  17. 17.
    Xing J, Wang X, Xun J, Peng J, Xu Q, Zhang W, Lou T (2018) Preparation of micro-nanofibrous chitosan sponges with ternary solvents for dye adsorption. Carbohydr Polym 198:69–75PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Roy JC, Ferri A, Giraud S, Jinping G, Salaun F (2018) Chitosan–carboxymethylcellulose-based polyelectrolyte complexation and microcapsule shell formulation. Int J Mol Sci 19:2521–2540PubMedCentralCrossRefGoogle Scholar
  19. 19.
    Ferfera-Harrar H, Aouaz N, Dairi N (2016) Environmental-sensitive chitosan-g-polyacrylamide/carboxymethylcellulose superabsorbent composites for wastewater purification I: synthesis and properties. Polym Bull 73:815–840CrossRefGoogle Scholar
  20. 20.
    Bidgoli H, Zamani A, Taherzadeh MJ (2010) Effect of carboxymethylation conditions on the water-binding capacity of chitosan-based superabsorbents. Carbohydr Res 345:2683–2689PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Liu JH, Wang WB, Wang AQ (2011) Synthesis, characterization, and swelling behaviors of chitosan-g-poly(acrylic acid)/poly(vinyl alcohol) semi-IPN superabsorbent hydrogels. Polym Adv Technol 22:627–634CrossRefGoogle Scholar
  22. 22.
    Liu JH, Wang AQ (2008) Study on superabsorbent composites. XXI. Synthesis, characterization and swelling behaviors of chitosan-g-poly(acrylic acid)/organo-rectorite nanocomposite superabsorbents. J Appl Polym Sci 110:678–686CrossRefGoogle Scholar
  23. 23.
    Xu W, Wang Z, Liu Y, Wang L, Jiang Z, Li T, Zhang W, Liang Y (2018) Carboxymethyl chitosan/gelatin/hyaluronic acid blended-membranes as epithelia transplanting scaffold for corneal wound healing. Carbohydr Polym 192:240–250PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Ma Y, Qi P, Ju J, Wang Q, Hao L, Wang R, Sui K, Tan Y (2019) Gelatin/alginate composite nanofiber membranes for effective and even adsorption of cationic dyes. Compos B Eng 162:671–677CrossRefGoogle Scholar
  25. 25.
    Eid M, Abdel-Ghaffar MA, Dessouki AM (2009) Effect of maleic acid content on the thermal stability, swelling behaviour and network structure of gelatin-based hydrogels prepared by gamma irradiation. Nucl Instrum Methods B 267:91–98CrossRefGoogle Scholar
  26. 26.
    Peng ZY, Li ZP, Shen YQ (2012) Influence of chemical cross-linking on properties of gelatin/chitosan microspheres. Polym Plast Technol 51:381–385CrossRefGoogle Scholar
  27. 27.
    Rodríguez-Rodríguez R, García-Carvajal ZY, Jiménez-Palomar I, Jiménez-Avalos JA, Espinosa-Andrews H (2019) Development of gelatin/chitosan/PVA hydrogels: thermal stability, water state, viscoelasticity, and cytotoxicity assays. J Appl Polym Sci 136:47149CrossRefGoogle Scholar
  28. 28.
    Li J, Wang Q, Gu Y, Zhu Y, Chen L, Chen Y (2017) Production of composite scaffold containing silk fibroin, chitosan, and gelatin for 3D cell culture and bone tissue regeneration. Med Sci Monit 23:5311–5320PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Wang X, Lou T, Zhao W, Song G (2016) Preparation of pure chitosan film using ternary solvents and its super absorbency. Carbohydr Polym 153:253–257PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Kumar P, Dehiya BS, Sindhu A (2017) Comparative study of chitosan and chitosan–gelatin scaffold for tissue engineering. Int Nano Lett 7:285–290CrossRefGoogle Scholar
  31. 31.
    Chen S, Zhou B, Ma M, Wu BZ, Shi YQ, Wang X (2016) Multiporous microstructure for enhancing the water absorption and swelling rate in poly(sodium acrylic acid) superabsorbent hydrogels based on a novel physical and chemical composite foaming system. J Appl Polym Sci 133:44149Google Scholar
  32. 32.
    Zamani A, Taherzadeh MJ (2010) Effects of partial dehydration and freezing temperature on the morphology and water binding capacity of carboxymethyl chitosan-based superabsorbents. Ind Eng Chem Res 49:8094–8099CrossRefGoogle Scholar
  33. 33.
    Wang WB, Huang DJ, Kang YR, Wang AQ (2013) One-step in situ fabrication of a granular semi-IPN hydrogel based on chitosan and gelatin for fast and efficient adsorption of Cu2+ ion. Colloid Surf B 106:51–59CrossRefGoogle Scholar
  34. 34.
    Lou T, Cui G, Xun J, Wang X, Feng N, Zhang J (2018) Synthesis of a terpolymer based on chitosan and lignin as an effective flocculant for dye removal. Colloid Surf A 537:149–154CrossRefGoogle Scholar
  35. 35.
    Lou T, Wang X, Song G, Cui G (2017) Synthesis and flocculation performance of a chitosan–acrylamide–fulvic acid ternary copolymer. Carbohydr Polym 170:182–189PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    He B, Wang X, Xue H (2016) The performance of chitosan/gelatin composite microspheres in the wash-off procedure of reactive dyeing. Color Technol 132:353–360CrossRefGoogle Scholar
  37. 37.
    Qiao D, Yu L, Bao X, Zhang B, Jiang F (2017) Understanding the microstructure and absorption rate of starch-based superabsorbent polymers prepared under high starch concentration. Carbohydr Polym 175:141–148PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Gamiz-Gonzalez MA, Piskin AE, Pandis C, Chatzimanolis-Moustakas C, Kyritsis A, Mari B, Ribelles JL, Vidaurre A (2015) Determining the influence of N-acetylation on water sorption in chitosan films. Carbohydr Polym 133:110–116PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Sobahi TRA, Abdelaal MY, Makki MSI (2014) Chemical modification of chitosan for metal ion removal. Arab J Chem 7:741–746CrossRefGoogle Scholar
  40. 40.
    Martinez A, Blanco MD, Davidenko N, Cameron RE (2015) Tailoring chitosan/collagen scaffolds for tissue engineering: effect of composition and different crosslinking agents on scaffold properties. Carbohydr Polym 132:606–619PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Wang J, Wang L, Yu H, Zain Ul A, Chen Y, Chen Q, Zhou W, Zhang H, Chen X (2016) Recent progress on synthesis, property and application of modified chitosan: an overview. Int J Biol Macromol 88:333–344PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Singh J, Dhaliwal AS (2018) Synthesis, characterization and swelling behavior of silver nanoparticles containing superabsorbent based on grafted copolymer of polyacrylic acid/Guar gum. Vacuum 157:51–60CrossRefGoogle Scholar
  43. 43.
    Rasib SZM, Ahmad Z, Khan A, Akil HM, Othman MBH, Hamid ZAA, Ullah F (2018) Synthesis and evaluation on pH-and temperature-responsive chitosan-p(MAA-co-NIPAM) hydrogels. Int J Biol Macromol 108:367–375PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    El-Naggar AWM, Alla SGA, Said HM (2006) Temperature and pH responsive behaviours of CMC/AAc hydrogels prepared by electron beam irradiation. Mater Chem Phys 95:158–163CrossRefGoogle Scholar
  45. 45.
    Naeem F, Khan S, Jalil A, Ranjha NM, Riaz A, Haider MS, Sarwar S, Saher F, Afzal S (2017) pH responsive cross-linked polymeric matrices based on natural polymers: effect of process variables on swelling characterization and drug delivery properties. Bioimpacts 7:177–192PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Wei C, Huang Y, Liao Q, Fu Q, Xia A, Sun Y (2018) The kinetics of the polyacrylic superabsorbent polymers swelling in microalgae suspension to concentrate cells density. Bioresour Technol 249:713–719PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Marandi GB, Sharifnia N, Hosseinzadeh H (2006) Synthesis of an alginate–poly(sodium acrylate-co-acrylamide) superabsorbent hydrogel with low salt sensitivity and high pH sensitivity. J Appl Polym Sci 101:2927–2937CrossRefGoogle Scholar
  48. 48.
    Sawut A, Yimit M, Sun W, Nurulla I (2014) Photopolymerisation and characterization of maleylatedcellulose-g-poly(acrylic acid) superabsorbent polymer. Carbohydr Polym 101:231–239PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Olad A, Pourkhiyabi M, Gharekhani H, Doustdar F (2018) Semi-IPN superabsorbent nanocomposite based on sodium alginate and montmorillonite: reaction parameters and swelling characteristics. Carbohydr Polym 190:295–306PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Rop K, Mbui D, Njomo N, Karuku GN, Michira I, Ajayi RF (2019) Biodegradable water hyacinth cellulose-graft-poly(ammonium acrylate-co-acrylic acid) polymer hydrogel for potential agricultural application. Heliyon 5:e01416PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Adair A, Kaesaman A, Klinpituksa P (2017) Superabsorbent materials derived from hydroxyethyl cellulose and bentonite: preparation, characterization and swelling capacities. Polym Test 64:321–329CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Chemistry and Chemical EngineeringQingdao UniversityQingdaoChina
  2. 2.Institute of Polymer ScienceQingdao UniversityQingdaoChina

Personalised recommendations