Crystallization study of shellac investigated by differential scanning calorimetry

  • Abhijit Mondal
  • Md. Amir Sohel
  • Arif P. Mohammed
  • A. S. Anu
  • Sabu Thomas
  • Asmita SenGuptaEmail author
Original Paper


The amount of crystallinity and non-isothermal crystallization kinetics of shellac have been studied using differential scanning calorimetry and X-ray diffraction, respectively. High-resolution transmission electron microscope has been used to obtain the particle size and distribution. Fourier transform infrared spectroscopy is used to determine chemical compositions of shellac. Polarized optical microscopy images have been used to see the growth of spherulites at different temperatures. Two-step crystallizations (C1 and C2) were observed for shellac. Both modified Avrami and combined Avrami–Ozawa model have been applied to determine the parameters for crystallization kinetics of shellac. Different cooling rates ranging from 5 to 15 °C min−1 have been used to study the non-isothermal kinetics of shellac. The Avrami exponents for the two crystallizations are determined from the modified Avrami analysis. The values of these exponents are in the range of 2.29–2.54 for both the crystallizations C1 and C2. The rate of crystallization for C1 is greater than that for C2 as observed from modified Avrami and combined Avrami–Ozawa method.


Shellac FTIR XRD HRTEM Polarized optical microscopy DSC 



The authors wish to acknowledge SERB/DST sponsored Project No. SB/S2/CMP-027/2014 for the DSC facility and DST-FIST PROGRAMME for XRD facility. The authors are thankful to Prof. M. Goswami of BARC, India, for FTIR measurement of shellac.


  1. 1.
    Limmatvapirat S, Limmatvapirat C, Luangtana-anan M, Nunthanid J, Oguchi T, Tozuka Y, Yamamoto K, Puttipipatkhachorn S (2004) Modification of physicochemical and mechanical properties of shellac by partial hydrolysis. Int J Pharm 278:41–49. CrossRefPubMedGoogle Scholar
  2. 2.
    Derry J (2012) A study on the processing methods of shellac and the analysis of selected physical and chemical characteristics. Dissertation, University of OsloGoogle Scholar
  3. 3.
    Sharma SK, Shukla SK, Vaid DN (1983) Shellac-structure, characteristics and modification. Def Sci J 33:261–271CrossRefGoogle Scholar
  4. 4.
    Baboo B, Goswami DN (2010) Processing, chemistry and application of lac. Chandu Press, New DelhiGoogle Scholar
  5. 5.
    Singh AN, Upadhye AB, Mhaskar VV, Dev S, Pol AV, Naik VG (1974) Chemistry of lac resin-VII: pure lac resin-3: structure. Tetrahedron 30:3689–3693CrossRefGoogle Scholar
  6. 6.
    Embuscado ME, Huber KC (2009) Edible films and coatings for food applications. Springer, New YorkGoogle Scholar
  7. 7.
    Du Y, Wang L, Mu R, Wang Y, Li Y, Wu D, Wu C, Pang J (2019) Fabrication of novel Konjac glucomannan/shellac film with advanced functions for food packaging. Int J Biol Macromol 131:36–42. CrossRefPubMedGoogle Scholar
  8. 8.
    Soradech S, Nutthanid J, Limmatvapirat S, Luangtana-anan M (2017) Utilization of shellac and gelatin composite film for coating to extend the shelf life of banana. Food Control 73:1310–1317. CrossRefGoogle Scholar
  9. 9.
    Limmatvapirat S, Limmatvapirat C, Puttipipatkhachorn S, Nuntanid J, Luangtana-anan M (2007) Enhanced enteric properties and stability of shellac films through composite salts formation. Eur J Pharm Biopharm 67:690–698. CrossRefPubMedGoogle Scholar
  10. 10.
    Gately NM, Kennedy JE (2017) The development of a melt-extruded shellac carrier for the targeted delivery of probiotics to the colon. Pharmaceutics 9(4):38. CrossRefPubMedCentralGoogle Scholar
  11. 11.
    Labuschagne PW, Naicker B, Kalombo L (2016) Micronization, characterization and in vitro dissolution of shellac from PGSS supercritical CO2 technique. Int J Pharm 499:205–216. CrossRefPubMedGoogle Scholar
  12. 12.
    Chattopadhyay S (2011) Introduction to lac and lac culture. Annapurna Press, JharkhandGoogle Scholar
  13. 13.
    Lakshminarayanan TR, Gupta MP (1975) X-ray diffraction studies on shellac/melamine resin blends. J Appl Polym Sci 19:3385–3386CrossRefGoogle Scholar
  14. 14.
    Mondal A, Sohel MA, SenGupta A (2018) Calorimetric studies on Indian lac structure. In: Proceedings of international conference on RAMSB 2018; Mangalore University, Mangalore, Jan 23–25Google Scholar
  15. 15.
    Goswami DN, Saha SK (2000) An investigation of the melting properties of different forms of lac by differential scanning calorimeter. Surf Coat Int 7:334–336CrossRefGoogle Scholar
  16. 16.
    Weng W, Chen G, Wu D (2003) Crystallization kinetics and melting behaviours of nylon 6/foliated graphite nanocomposites. Polymer 44:8119–8132. CrossRefGoogle Scholar
  17. 17.
    Ahmed J (2017) Glass transition and phase transitions in food and biological materials. Wiley-Blackwell, HobokenCrossRefGoogle Scholar
  18. 18.
    Liang H, Xie F, Guo F, Chen B, Luo F, Jin Z (2008) Non-isothermal crystallization behavior of poly(ethylene terephthalate)/poly(trimethyleneterephthalate) Blends. Polym Bull 60:115–127. CrossRefGoogle Scholar
  19. 19.
    Freire E, Bianchi O, Martins JN, Monterio EEC, Forte MMC (2012) Non-isothermal crystallization of PVDF/PMMA blends processed in low and high shear mixers. J Non-Cryst Solids 358:2674–2681. CrossRefGoogle Scholar
  20. 20.
    Lorenzo MLD, Sajkiewicz P, Pietra PL, Gradys A (2006) Irregularly shaped DSC exotherms in the analysis of polymer crystallization. Polym Bull 57:713–721. CrossRefGoogle Scholar
  21. 21.
    Lin X, Zhang H, Ke M, Xiao L, Zuo D, Qian Q, Chen Q (2014) Non-isothermal crystallization kinetics of poly(ethylene terephthalate)/mica composites. Polym Bull. CrossRefGoogle Scholar
  22. 22.
    Sarkar PC, Shrivastava AK (1997) FTIR spectroscopy of lac resin and its derivatives. Pigment Resin Technol 26(6):378–381CrossRefGoogle Scholar
  23. 23.
    Sarkar PC, Kumar KK (2001) An investigation into the different forms of lac resin using FT-IR and diffuse reflectance spectroscopy. Pigment Resin Technol 30(1):25–33CrossRefGoogle Scholar
  24. 24.
    Sarkar PC, Shrivastava AK (2000) FT-IR spectroscopic studies on degradation of lac resin. Part I: thermal degradation. Pigment Resin Technol 29(1):23–28CrossRefGoogle Scholar
  25. 25.
    Derrick MR, Stulik D, Landry JM (1999) Infrared spectroscopy in conservation science. Getty Trust, Los AngelesGoogle Scholar
  26. 26.
    Rubio AL, Flanagan BM, Gilbert EP, Gidley MJ (2008) A novel approach for calculating starch crystallinity and its correlation with double helix content: a combined XRD and NMR study. Biopolymers 89(9):761–768. CrossRefGoogle Scholar
  27. 27.
    Patel AR, Schatteman D, Vos WHD, Dewettinck K (2013) Shellac as a natural material to structure a liquid oil-based thermo reversible soft matter system. RSC Adv 3:5324–5327. CrossRefGoogle Scholar
  28. 28.
    Langhe D (2017) Fractionated crystallization in polymer blends. In: Thomas S, Mohammed Arif P, Gowd EB, Kalarikkal N (eds) Crystallization in multiphase polymer systems, 1st edn. Elsevier, Amsterdam, pp 239–267Google Scholar
  29. 29.
    Zhao C, Zhang P, Yi L, Xu F, Wang X, Yong J (2008) Study on the non-isothermal crystallization kinetics of novel polyamide 6/silica nanocomposites containing epoxy resins. Polym Test 27:412–419. CrossRefGoogle Scholar
  30. 30.
    Supaphol P, Dangseeyun N, Srimoaon P (2004) Non-isothermal melt crystallization kinetics for poly(trimethylene terephthalate)/poly(butylene terephthalate) blends. Polym Test 23:175–185. CrossRefGoogle Scholar
  31. 31.
    Wang L, Zhang F, Bai Y, Ding L (2016) Non-isothermal melt-crystallization kinetics of poly (ethylene terephthalate-co-sodium-5-sulfo-iso-phthalate). Thermocimica Acta 645:43–49. CrossRefGoogle Scholar
  32. 32.
    Papageorgiou GZ, Achilias DS, Bikiaris DN (2007) Crystallization kinetics of biodegradable poly(butylene succinate) under isothermal and non-Isothermal Conditions. Macromol Chem Phys 208:1250–1264. CrossRefGoogle Scholar
  33. 33.
    Avrami M (1939) Kinetics of phase change. I: general theory. J Chem Phys 7:1103–1112. CrossRefGoogle Scholar
  34. 34.
    Avrami M (1940) Kinetics of phase change. II: transformation-time relations for random distribution of nuclei. J Chem Phys 8:212–224. CrossRefGoogle Scholar
  35. 35.
    Jeziorny A (1978) Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by DSC. Polymer 19:1142–1144CrossRefGoogle Scholar
  36. 36.
    Haoa W, Yang W, Cai H, Huang Y (2010) Non-isothermal crystallization kinetics of polypropylene/silicon nitride nanocomposites. Polym Test 29:527–533. CrossRefGoogle Scholar
  37. 37.
    Liu T, Mo Z, Wang S, Zhang H (1979) Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone). Polym Eng Sci 37:568–575. CrossRefGoogle Scholar
  38. 38.
    Layachi A, FrihiD Satha H, Seguela R, Gherib S (2016) Non-isothermal crystallization kinetics of polyamide 66/glass fibres/carbon black composites. J Therm Anal Calorim 124:1319–1329. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Abhijit Mondal
    • 1
  • Md. Amir Sohel
    • 1
  • Arif P. Mohammed
    • 2
  • A. S. Anu
    • 2
  • Sabu Thomas
    • 2
  • Asmita SenGupta
    • 1
    Email author
  1. 1.Department of PhysicsVisva-BharatiSantiniketanIndia
  2. 2.International and Inter-University Centre for Nanoscience and NanotechnologyMahatma Gandhi UniversityKottayamIndia

Personalised recommendations