Development of novel iota carrageenan-g-polyvinyl alcohol polyelectrolyte membranes for direct methanol fuel cell application

  • M. S. Mohy EldinEmail author
  • H. A. Farag
  • T. M. Tamer
  • A. H. Konsowa
  • M. H. Gouda
Original Paper


In this study, novel iota carrageenan-g-PVA polyelectrolyte membranes (PEMs) developed for application in direct methanol fuel cell (DMFC). Iota carrageenan (I-Car) was cross-linked with polyvinyl alcohol (PVA) both ionically and chemically using sulfophthalic acid (SPA) and glutaraldehyde (GA) for the first time. SPA plays a dual role which is to sulfonate the PVA and act as an ionic cross-linker. The use of iota carrageenan offers much more sulfonic acid groups, compared to the kappa carrageenan, which in addition to the sulfonic group of SPA contributes to the induction of the ion-exchange capacity and consequently the ionic conductivity of the developed membranes. Factors affecting the fabrication of the membranes such as polymers composition, cross-linking time, pH, temperature, cross-linker type, and concentration were studied. The chemical structures of the prepared membranes verified through FT-IR, TGA, and XRD techniques. Mechanical properties were investigated. Moreover, the ion-exchange capacity, water, methanol sorption, and the methanol crossover flux across the PEMs were adopted as monitors for this study. It was found that the methanol permeability and the IEC were 15% and 133% of Nafion®117. The efficiency factor for the prepared I-Car-g-PVA membrane was one order higher than that of the Nafion 117.


PVA Iota carrageenan Ionic and chemical cross-linking Polyelectrolyte membranes Ion-exchange capacity Methanol permeability Direct methanol fuel cell 



  1. 1.
    Miyatake K, Chikashige Y, Higuchi E, Watanabe M (2007) Tuned polymer electrolyte membranes based on aromatic polyethers for fuel cell applications. JACS 129:3879–3887CrossRefGoogle Scholar
  2. 2.
    Bi C, Zhang H, Zhang Y, Zhu X, Ma Y, Dai H, Xiao S (2008) Fabrication and investigation of SiO2 supported sulfated zirconia/Nafion® self-humidifying membrane for proton exchange membrane fuel cell applications. J Power Sources 184:197–203CrossRefGoogle Scholar
  3. 3.
    Nam SE, Kim SO, Kang Y, Lee JW, Lee KH (2008) Preparation of Nafion/sulfonated poly(phenylsilsesquioxane) nanocomposite as high temperature proton exchange membranes. J Membr Sci 322:466–474CrossRefGoogle Scholar
  4. 4.
    Gui L, Zhang C, Kang S, Tan N, Xiao G, Yan D (2010) Synthesis and properties of hexafluoroisopropylidene-containing sulfonated poly(arylene thioether phosphine oxide)s for proton exchange membranes. Int J Hydrog Energy 35:2436–2445CrossRefGoogle Scholar
  5. 5.
    Pivovar BS, Wang Y, Cussler EL (1999) Pervaporation membranes in direct methanol fuel cells. J Membr Sci 154:155–162CrossRefGoogle Scholar
  6. 6.
    Hickner MA, Ghassemi H, Kim YS, Einsla BR, McGrath JE (2004) Alternative polymer systems for proton exchange membranes (PEMs). Chem Rev 104:4587–4612PubMedCrossRefGoogle Scholar
  7. 7.
    Zhu X, Liang Y, Pan H, Jian X, Zhang Y (2008) Synthesis and properties of novel H-bonded composite membranes from sulfonated poly(phthalazinone ether)s for PEMFC. J Membr Sci 312:59–65CrossRefGoogle Scholar
  8. 8.
    Dillon R, Srinivasan S, Aricò AS (2004) International activities in DMFC R&D: status of technologies and potential applications. J Power Sources 127:112–126CrossRefGoogle Scholar
  9. 9.
    Tan S, Belanger D (2005) Characterization and transport properties of Nafion/polyaniline composite membranes. J Phys Chem B 109:23480–23490PubMedCrossRefGoogle Scholar
  10. 10.
    Min SH, Kim DJ (2010) SAXS cluster structure and properties of sPEEK/PEI composite membranes for DMFC applications. Solid State Ionics 180:1690–1693CrossRefGoogle Scholar
  11. 11.
    Huang CH, Wu HM, Chen CC, Wang CW, Kuo PL (2010) Preparation, characterization and methanol permeability of proton conducting membranes based on sulfonated ethylene-vinyl alcohol copolymer. J Membr Sci 353:1–9CrossRefGoogle Scholar
  12. 12.
    Kuver A, Vogel I, Vielstich W (1994) Distinct performance evaluation of a direct methanol SPE fuel cell. A new method using a dynamic hydrogen reference electrode. J Power Sources 52:77–80CrossRefGoogle Scholar
  13. 13.
    Jorissen L, Gogel V, Kerres J, Garche J (2002) New membranes for direct methanol fuel cells. J Power Sources 105:267–273CrossRefGoogle Scholar
  14. 14.
    Sank J, Byun J, Kim H (2004) Grafting of styrene on to Nafion membranes using supercritical CO2 impregnation for direct methanol fuel cells. J Power Sources 132:59–63CrossRefGoogle Scholar
  15. 15.
    Bae B, Yong Ha H, Kim D (2006) Nafion®-graft-polystyrene sulfonic acid membranes for direct methanol fuel cells. J Membr Sci 276:51–58CrossRefGoogle Scholar
  16. 16.
    Mohy Eldin MS, Elzatahry AA, El-Khatib KM, Hassan EA, El-Sabbah MM, Abu-Saied MA (2011) Novel grafted nafion membranes for proton-exchange membrane fuel cell applications. J Appl Polym Sci 119:120–133CrossRefGoogle Scholar
  17. 17.
    Ren S, Sun G, Li C, Song S, Xin Q, Yang X (2006) Sulfated zirconia–Nafion composite membranes for higher temperature direct methanol fuel cells. J Power Sources 157:724–726CrossRefGoogle Scholar
  18. 18.
    Shaari N, Kamarudin SK (2015) Chitosan and alginate types of bio-membrane in fuel cell application: an overview. J Power Sources 289:71–80CrossRefGoogle Scholar
  19. 19.
    Karthikeyan S, Selvasekarapandian S, Premalatha M, Monisha S, Boopathi G, Aristatil G, Arun A, Madeswaran S (2016) Proton-conducting I-Carrageenan-based biopolymer electrolyte for fuel cell application. Ionics 23:2775–2780CrossRefGoogle Scholar
  20. 20.
    Abu-Saied MA, Elzatahry AA, El-Khatib KM, Hassan EA, El-Sabbah MM, Drioli E, Mohy Eldin MS (2012) Preparation and characterization of novel grafted cellophane-phosphoric acid-doped membranes for proton exchange membrane fuel cell applications. J Appl Polym Sci 123:3710–3724CrossRefGoogle Scholar
  21. 21.
    Mohy Eldin MS, Abd Elmageed MH, Omer AM, Tamer TM, Yossuf ME, Khalifa RE (2016) Development of novel phosphorylated cellulose acetate polyelectrolyte membranes for direct methanol fuel cell application. Int J Electrochem Sci 11:3467–3482CrossRefGoogle Scholar
  22. 22.
    Mohy Eldin MS, Abu-Saied MA, Elzatahry AA, El-Khatib KM, Hassan EA, El-Sabbah MM (2011) Novel acid-base polyvinyl chloride-doped ortho-phosphoric acid membranes for fuel cell applications. Int J Electrochem Sci 6:5417–5429Google Scholar
  23. 23.
    Molláa S, Compaña V (2011) Polyvinyl alcohol nanofiber reinforced Nafion membranes for fuel cell applications. J Membr Sci 372:191–200CrossRefGoogle Scholar
  24. 24.
    Pivovar BS, Wang Y, Cussler EL (1999) Pervaporation membranes in direct methanol fuel cells. J Membr Sci 154:155–162CrossRefGoogle Scholar
  25. 25.
    Chanthad C, Wootthi kanok khan J (2006) Effects of crosslinking time and amount of sulfophthalic acid on properties of the sulfonated poly(vinyl alcohol) membrane. J Appl Polym Sci 101:1931–1936CrossRefGoogle Scholar
  26. 26.
    Boroglu MS, Cavus S, Boz I, Ata A (2011) Synthesis and characterization of poly(vinyl alcohol) proton exchange membranes modified with 4,4-diaminodiphenylether-2,2-disulfonic acid. eXPRESS Polymer Letters 5:470–478CrossRefGoogle Scholar
  27. 27.
    Merle G, Hosseiny SS, Wessling M, Nijmeijer K (2012) New cross-linked PVA based polymer electrolyte membranes for alkaline fuel cells. J Membr Sci 409–410:191–199CrossRefGoogle Scholar
  28. 28.
    Beydaghi H, Javanbakht M, Badiei A (2014) Cross-linked poly(vinyl alcohol)/sulfonated nanoporous silica hybrid membranes for proton exchange membrane fuel cell. J Nanostruct Chem 4:97–103CrossRefGoogle Scholar
  29. 29.
    Gopi KH, Dhavale V, Bhat SD (2019) Development of polyvinyl alcohol/chitosan blend anion exchange membrane with mono and di quaternizing agents for application in alkaline polymer electrolyte fuel cells. Mater Sci Energy Technol 2:194–202Google Scholar
  30. 30.
    Rudra R, Kumar V, Kundu PP (2015) Acid catalysed cross-linking of polyvinyl alcohol (PVA) by glutaraldehyde: effect of crosslink density on the characteristics of PVA membranes used in single chambered microbial fuel cells. RSC Adv 5:83436–83447CrossRefGoogle Scholar
  31. 31.
    Selvin PC, Perumal P, Selvasekarapandian S, Monisha S, Boopathi G, Chandra MVL (2018) Study of proton-conducting polymer electrolyte based on K-carrageenan and NH4SCN for electrochemical devices. Ionics 24:3535–3542CrossRefGoogle Scholar
  32. 32.
    Moniha V, Alagar M, Selvasekarapandian S, Sundaresan B, Hemalatha R, Boopathi G (2018) Synthesis and characterization of bio-polymer electrolyte based on iota-carrageenan with ammonium thiocyanate and its applications. J Solid State Electrochem 22:3209–3223CrossRefGoogle Scholar
  33. 33.
    Chitra R, Sathya P, Selvasekarapandian S, Monisha S, Moniha V, Meyvel S (2019) Synthesis and characterization of iota-carrageenan solid biopolymer electrolytes for electrochemical applications. Ionics 25:2147–2157CrossRefGoogle Scholar
  34. 34.
    Manguiam VLR, Cruz NA, Adornado AP (2019) κ-Carrageenan and aluminum oxide as a potential replacement for industry-standard materials in proton exchange membrane fuel cell (PEMFC) fabrication. IOP Conf Ser Earth Environ Sci 219:012027CrossRefGoogle Scholar
  35. 35.
    Sukhlaaieda W, Riyajan S-A (2013) Synthesis and properties of carrageenan grafted copolymer with poly(vinyl alcohol). Carbohydr Polym 98:677–685CrossRefGoogle Scholar
  36. 36.
    Dafader NC, Manir MS, Alam MF, Swapna SP, Akter T, Huq D (2015) Sop Trans Appl Chem 2:1–12CrossRefGoogle Scholar
  37. 37.
    Islam T, Dafader NC, Poddar P, Khan NS, Chowdhury AMS (2016) Studies on swelling and absorption properties of the γ-irradiated polyvinyl alcohol (PVA)/Kappa-Carrageenan blend hydrogels. J Adv Chem Eng 6:153–158CrossRefGoogle Scholar
  38. 38.
    Bajpai SK, Daheriya P, Ahuja S, Gupta K (2016) Water absorption and antimicrobial behaviour of physically cross-linked poly (vinyl alcohol)/carrageenan films loaded with minocycline. Des Monomers Polym 19:630–642CrossRefGoogle Scholar
  39. 39.
    Meng F, Zhang Y, Xiong Z, Wang G, Li F, Zhang L (2018) Mechanical, hydrophobic and thermal properties of an organic-inorganic hybrid carrageenan-polyvinyl alcohol composite film. Compos Part B 143:1–8CrossRefGoogle Scholar
  40. 40.
    Yang CC, Chien WC, Li YJ (2010) Direct methanol fuel cell based on poly(vinyl alcohol)/titanium oxide nanotubes/poly(styrene sulfonic acid) (PVA/nt–TiO2/PSSA) composite polymer membrane. J Power Sources 195:3407–3415CrossRefGoogle Scholar
  41. 41.
    Mohy Eldin MS, Soliman EA, Hassan EA, Abu-Saied MA (2009) Immobilized metal ions cellophane–PGMA-grafted membranes for affinity separation of β-galactosidase enzyme. I. Preparation and characterization. J Appl Polym Sci 111:2647–2656CrossRefGoogle Scholar
  42. 42.
    Mohy Eldin MS, Elzatahry AA, El-Khatib KM, Hassan EA, El-Sabbah MM, Abu-Saied MA (2011) Novel grafted Nafion membranes for proton-exchange membrane fuel cell applications. J Appl Polym Sci 119:120–133CrossRefGoogle Scholar
  43. 43.
    Figueiredo KCS, Alves TLM, Borges CP (2009) Poly (vinyl alcohol) films crosslinked by glutaraldehyde under mild conditions. J Appl Polym Sci 111:3074–3080CrossRefGoogle Scholar
  44. 44.
    Marin E, Rojas J (2015) Preparation and characterization of crosslinked poly (vinyl) alcohol films with waterproof properties. Int J Pharm Pharm Sci 7:242–248Google Scholar
  45. 45.
    Distantina S, Rochmadi Fahrurrozi M, Wiratni (2013) Preparation and characterization of glutaraldehyde-crosslinked kappa carrageenan hydrogel. Eng J 17:57–66CrossRefGoogle Scholar
  46. 46.
    Distantina S, Rochmadi, Fahrurrozi M, Wiratni (2012) Preparation of hydrogel based on glutaraldehyde-crosslinked carrageenan. In: 2012 3rd international conference on chemistry and chemical engineering IPCBEE 38 (2012) © (2012) IACSIT Press, SingaporeGoogle Scholar
  47. 47.
    Chandy T, Sharma CP (1992) Prostaglandin E1-immobilized poly(vinyl alcohol)-blended chitosan membranes: Blood compatibility and permeability properties. J Appl Polym Sci 44:2145–2156CrossRefGoogle Scholar
  48. 48.
    Pereira L, Amado AM, Critchley AT, van de Velde F, Ribeiro-Claro PJA (2009) Identification of selected seaweed polysaccharides (phycocolloids) by vibrational spectroscopy (FTIR-ATR and FT-Raman). Food Hydrocolloids 23:1903–1909CrossRefGoogle Scholar
  49. 49.
    Pereira L (2004) Estudos em macroalgas carragenófitas (Gigartinales, Rhodophyceae) da costa portuguesa-aspectos ecológicos, bioquímicos e citológicos [Ph.D. thesis], FCTUC, University of CoimbraGoogle Scholar
  50. 50.
    Zhanga W, Xuea Z, Yana M, Liua J, Xiaa Y (2016) Effect of epichlorohydrin on the wet spinning of carrageenan fibres under optimal parameter conditions. Carbohydr Polym 150:232–240CrossRefGoogle Scholar
  51. 51.
    Amine ABA (2007) Preparation of polyelectrolyte membranes and electrodes for direct methanol fuel cells [M.Sc. thesis], Faculty of Science Al-Azhar University, CairoGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI)City of Scientific Research and Technological Applications (SRTA-City)New Borg El-Arab City, AlexandriaEgypt
  2. 2.Chemical Engineering Department, Faculty of EngineeringAlexandria UniversityAlexandriaEgypt

Personalised recommendations