Advertisement

PVGA/Alginate-AgNPs hydrogel as absorbent biomaterial and its soil biodegradation behavior

  • G. M. Estrada-VillegasEmail author
  • G. Morselli
  • M. J. A. Oliveira
  • G. González-Pérez
  • A. B. Lugão
Original Paper
  • 26 Downloads

Abstract

PVGA, silver nitrate (AgNO3) and alginate (Alg) were cross-linked by using γ-ray radiation to obtain Alg/PVGA/AgNPs as a potential biomaterial. The hydrogel composition was characterized by several analytics methods, and the morphology was evaluated by scanning electron microscopy. The swelling behavior was tested in different mediums. The stability of AgNPs was followed by UV–Vis at 400 nm for 1 month. The hydrogel soil biodegradation was analyzed by visual observation, weight loss, Fourier transform infrared spectroscopy and thermogravimetric analysis for 120 days. A simple biodegradation mechanism has been proposed based on results. Additionally, cytotoxicity assays were carried out using NCTC 929 cells to observe cell viability.

Keywords

Biomaterial Cross-linking Biodegradation Hydrogel Silver nanoparticles 

Notes

Funding

We also thank M.Sc. Pablo A. S. Vásquez, Center for Radiation Technology (CTR-IPEN-SP), for irradiation support; Microscopy and Microanalysis Laboratory (CCTM-IPEN-SP) and project CONACYT 296395 for partial support.

References

  1. 1.
    Peppas NA, Slaughter BV, Kanzelberger MA (2012) Hydrogels. In: Polymer science: a comprehensive reference, Elsiever (ed), vol 9. pp 385–395.  https://doi.org/10.1016/b978-0-444-53349-4.00226-0
  2. 2.
    Lima-Tenório MK, Tenório-Neto ET, Guilherme MR, Garcia Francielle P, Nakamura CV, Pineda EAG, Rubira AF (2015) Water transport properties through starch-based hydrogel nanocomposites responding to both pH and a remote magnetic field. Chem Eng J 259:620–629.  https://doi.org/10.1016/j.cej.2014.08.045 CrossRefGoogle Scholar
  3. 3.
    Kamath KR, Park K (1993) Biodegradable hydrogels in drug delivery. Adv Drug Deliv Rev 11:59–84.  https://doi.org/10.1016/0169-409X(93)90027-2 CrossRefGoogle Scholar
  4. 4.
    White R, Cutting KF (2006) Modern exudates management: a review of wound treatments. World Wide Wounds 1.0. http://www.worldwidewounds.com/2006/september/White/Modern-Exudate-Mgt.html
  5. 5.
    Kamoun EA, El-Refaie KS, Tamer TM, El-Meligy MA, Eldin MSM (2015) Poly (vinylalcohol)-alginate physically cross-linked hydrogel membranes for wound dressing applications: characterization and bio-evaluation. Arab J Chem 8:38–47.  https://doi.org/10.1016/j.arabjc.2013.12.003 CrossRefGoogle Scholar
  6. 6.
    Salehpour S, Jonoobi M, Ahmadzadeh M, Siracusa V, Rafieian F, Oksman K (2018) Biodegradation and ecotoxicological impact of cellulose nanocomposites in municipal solid waste composting. Int J Biol Macromol 111:264–270.  https://doi.org/10.1016/j.ijbiomac.2018.01.027 CrossRefPubMedGoogle Scholar
  7. 7.
    Chiellini E, Solaro R (1996) Biodegradable polymeric materials. Adv Mater 8:305–313.  https://doi.org/10.1002/adma.19960080406 CrossRefGoogle Scholar
  8. 8.
    Bhattacharya A (2000) Radiation and industrial polymers. Prog Polym Sci 25:371–401.  https://doi.org/10.1016/S0079-6700(00)00009-5 CrossRefGoogle Scholar
  9. 9.
    Immirzi B, Santagata G, Vox G, Schettini E (2009) Preparation, characterization and field-testing of a biodegradable sodium alginate-based spray mulch. Biosyst Eng 102:461–472.  https://doi.org/10.1016/j.biosystemseng.2008.12.008 CrossRefGoogle Scholar
  10. 10.
    Bastioli C (2005) Editor handbook of biodegradable polymers rapra technology limited. Shrewsbury, U.K. Rapra TechnologyGoogle Scholar
  11. 11.
    Tudorachi N, Cascaval CN, Rusu M, Pruteanu M (2000) Testing of polyvinyl alcohol and starch mixtures as biodegradable polymeric materials. Polym Test 19:785–799.  https://doi.org/10.1016/S0142-9418(99)00049-5 CrossRefGoogle Scholar
  12. 12.
    Hebeish A, Hashem M, El-Hady MM, Sharaf S (2013) Development of CMC hydrogels loaded with silver nano-particles for medical applications. Carbohydr Polym 92:407–413.  https://doi.org/10.1016/j.carbpol.2012.08.094 CrossRefPubMedGoogle Scholar
  13. 13.
    Jawaid M, Abdul Khalil HPS (2011) Cellulosic/synthetic fibre reinforced polymer hybrid composites: a review. Carbohyd Polym 86:1–18CrossRefGoogle Scholar
  14. 14.
    Ikejima T, Inoue Y (2000) Crystallization behavior and environmental biodegradability of the blend films of poly(3-hydroxybutyric acid) with chitin and chitosan. Carbohydr Polym 41:351–356.  https://doi.org/10.1016/S0144-8617(99)00105-8 CrossRefGoogle Scholar
  15. 15.
    Roy N, Saha N, Kitano T, Saha P (2012) Biodegradation of PVP-CMC hydrogel film: a useful food packaging material. Carbohydr Polym 89:346–353.  https://doi.org/10.1016/j.carbpol.2012.03.008 CrossRefPubMedGoogle Scholar
  16. 16.
    Ying-Ning P, Swee-Yong C, Chee-Onn L, Yok-Lan T (2011) Thermal and microbial degradation of alginate-based superabsorbent polymer. Polym Degrad Stab 96:1653–1661.  https://doi.org/10.1016/j.polymdegradstab.2011.06.010 CrossRefGoogle Scholar
  17. 17.
    Yoo-Joo K, Kee-Jong Y, Sohk-Won K (2000) Preparation and properties of alginate superabsorbent filament fibers crosslinked with glutaraldehyde. J Appl Polym Sci 78:1797–1804.  https://doi.org/10.1002/1097-4628(20001205)78:10%3c1797:aid-app110%3e3.0.co;2-m CrossRefGoogle Scholar
  18. 18.
    Kamoun EA, El-RS Kenawy, Chen X (2017) A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J Adv Res 3:217–233.  https://doi.org/10.1016/j.jare.2017.01.005 CrossRefGoogle Scholar
  19. 19.
    Shalumon KT, Anulekha KH, Sreeja VN, Nair SV, Chennazhi KP, Jayakumar R (2011) Sodium alginate/poly(vinyl alcohol)/nano ZnO composite nanofibers for antibacterial wound dressings. Int J Biol Macromol 49:247–254.  https://doi.org/10.1016/j.ijbiomac.2011.04.005 CrossRefPubMedGoogle Scholar
  20. 20.
    Kim JO, Park JK, Kim JH, Jin SG, Yong CS, Li DX, Choi JY, Woo JS, Yoo BK, Lyoo WS, Kim JA, Choi HG (2008) Development of polyvinyl alcohol–sodium alginate gel-matrix-based wound dressing system containing nitrofurazone. Int J Pharm 359:79–86.  https://doi.org/10.1016/j.ijpharm.2008.03.021 CrossRefPubMedGoogle Scholar
  21. 21.
    Estrada Villegas GM, Morselli GR, González-Pérez G, Lugão AB (2018) Enhancement swelling properties of PVGA hydrogel by alternative radiation cross-linking route. Radiat Phys Chem 153:44–50.  https://doi.org/10.1016/j.radphyschem.2018.08.038 CrossRefGoogle Scholar
  22. 22.
    Thoniyot P, Tan MJ, Karim AA, Young DJ, Loh XJ (2015) Nanoparticle-hydrogel composites: concept, design, and applications of these promising, multi-functional materials. Adv Sci 2:1400010.  https://doi.org/10.1002/advs.201400010 CrossRefGoogle Scholar
  23. 23.
    Lyutakov O, Goncharova I, Rimpelova S, Kolarova K, Svanda J, Svorcik V (2015) Silver release and antimicrobial properties of PMMA films doped with silver ions, nano-particles and complexes. Adv Mater Sci Eng C 49:534–540.  https://doi.org/10.1016/j.msec.2015.01.022 CrossRefGoogle Scholar
  24. 24.
    Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83.  https://doi.org/10.1016/j.biotechadv.2008.09.002 CrossRefPubMedGoogle Scholar
  25. 25.
    Fu LH, Gao QL, Qi C, Ma MG, Li JF (2018) Microwave-hydrothermal rapid synthesis of cellulose/Ag nanocomposites and their antibacterial activity. Nanomaterials 27:1–13.  https://doi.org/10.3390/nano8120978 CrossRefGoogle Scholar
  26. 26.
    Chandran S, Ravichandran V, Chandran S, Chemmanda J, Chandarshekar B (2016) Biosynthesis of PVA encapsulated silver nanoparticles. J Appl Res Technol 14:319–324.  https://doi.org/10.1016/j.jart.2016.07.001 CrossRefGoogle Scholar
  27. 27.
    Becaro AA, Jonsson CM, Puti FC, Siqueira MC, Mattoso LHC, Correa DS, Ferreira MD (2015) Toxicity of PVA-stabilized silver nanoparticles to algae and microcrustaceans. Environ Nanotechnol Monit Manag 3:22–29.  https://doi.org/10.1016/j.enmm.2014.11.002 CrossRefGoogle Scholar
  28. 28.
    Eghbalifam N, Frounchi M, Dadbin S (2015) Antibacterial silver nanoparticles in polyvinyl alcohol/sodium alginate blend produced by gamma irradiation. Int J Biol Macromol 80:170–176.  https://doi.org/10.1016/j.ijbiomac.2015.06.042 CrossRefPubMedGoogle Scholar
  29. 29.
    El-Shamy AG, Attia WM, Kader KMA (2017) Enhancement of the conductivity and dielectric properties of PVA/Ag nanocomposite films using γ irradiation. Mater Chem Phys 191:225–229.  https://doi.org/10.1016/j.matchemphys.2017.01.026 CrossRefGoogle Scholar
  30. 30.
    Swaroop K, Francis S, Somashekarappa HM (2016) Gamma irradiation synthesis of Ag/PVA hydrogels and its antibacterial activity. Mater Today Proc 3:1792–1798.  https://doi.org/10.1016/j.matpr.2016.04.076 CrossRefGoogle Scholar
  31. 31.
    Chen P, Song L, Liu Y, Fang Y (2007) Synthesis of silver nanoparticles by γ -ray irradiation in acetic water solution containing chitosan. Radiat Phys Chem 76:1165–1168.  https://doi.org/10.1016/j.radphyschem.2006.11.012 CrossRefGoogle Scholar
  32. 32.
    Sedlacek O, Kucka J, Monnery BD, Slouf M, Vetrik M, Hoogenboom R, Hruby M (2017) The effect of ionizing radiation on biocompatible polymers: from sterilization to radiolysis and hydrogel formation. Polym Degrad Stab 137:1–10.  https://doi.org/10.1016/j.polymdegradstab.2017.01.005 CrossRefGoogle Scholar
  33. 33.
    Qing Y, Cheng L, Li R, Liu G, Zhang Y, Tang X, Wang J, Liu H, Qin Y (2018) Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. Int J Nanomed 13:3311–3327.  https://doi.org/10.2147/IJN.S165125 CrossRefGoogle Scholar
  34. 34.
    Malkar VV, Mukherjee T, Kapoor S (2014) Synthesis of silver nanoparticles in aqueous aminopolycarboxylic acid solutions via γ-irradiation and hydrogen reduction. Mater Sci Eng C 44:87–91.  https://doi.org/10.1016/j.msec.2014.08.002 CrossRefGoogle Scholar
  35. 35.
    Patel GM, Patel CP, Trivedi HC (1999) Ceric-induced grafting of methyl acrylate onto sodium salt of partially carboxymethylated sodium alginate. Eur Polym J 35:201–208.  https://doi.org/10.1016/S0014-3057(98)00123-2 CrossRefGoogle Scholar
  36. 36.
    Adzmi F, Meon S, Hanafi-Musa M, Azah-Yusuf N (2012) Preparation, characterization and viability of encapsulated Trichoderma harzianum UPM40 in alginate-montmorillonite clay. J Microencapsul 29:205–210.  https://doi.org/10.3109/02652048.2012.659286 CrossRefPubMedGoogle Scholar
  37. 37.
    Sreedhar B, Sairam M, Chattopadhyay DK, Syamala Rathnam PA, Mohan Rao DV (2005) Thermal, mechanical, and surface characterization of starch–poly(vinyl alcohol) blends and borax-crosslinked films. J Appl Polym Sci 96:1313–1322.  https://doi.org/10.1002/app.21439 CrossRefGoogle Scholar
  38. 38.
    Mohsin M, Hossin A, Haik Y (2011) Thermal and mechanical properties of poly(vinyl alcohol) plasticized with glycerol. J Appl Polym Sci 22:3102–3109.  https://doi.org/10.1002/app.34229 CrossRefGoogle Scholar
  39. 39.
    Laurienzo P, Malinconico M, Motta A, Vicinanza A (2005) Synthesis and characterization of a novel alginate-poly(ethylene glycol) graft copolymer. Carbohyd Polym 62:274–282.  https://doi.org/10.1016/j.carbpol.2005.08.005 CrossRefGoogle Scholar
  40. 40.
    Eldin MSM, Soliman EA, Elzatahry AAF, Elaassar MR, Elkady MF, Rahman AMA, Yossef ME, Eweida BY (2012) Preparation and characterization of imino diacetic acid functionalized alginate beads for removal of contaminants from waste water: I. methylene blue cationic dye model. Desalin Water Treat 40:15–23.  https://doi.org/10.1080/19443994.2012.671136 CrossRefGoogle Scholar
  41. 41.
    Agnihotri S, Mukherji S, Mukherji S (2012) Antimicrobial chitosan–PVA hydrogel as a nanoreactor and immobilizing matrix for silver nanoparticles. Appl Nanosci 2:179–188.  https://doi.org/10.1007/s13204-012-0080-1 CrossRefGoogle Scholar
  42. 42.
    Horkay F, Tasaki I, Basser PJ (2000) Osmotic swelling of polyacrylate hydrogels in physiological salt solutions. Biomacromol 1:84–90.  https://doi.org/10.1021/bm9905031 CrossRefGoogle Scholar
  43. 43.
    Okay O (2009) General properties of hydrogels. In: Gerlach G, Arndt K-F (eds) Hydrogel sensors and actuators, 1st edn. Springer, Berlin, pp 1–14Google Scholar
  44. 44.
    Allaker RP (2010) The use of nanoparticles to control oral biofilm formation. J Dent Res 89:1175–1186.  https://doi.org/10.1177/0022034510377794 CrossRefPubMedGoogle Scholar
  45. 45.
    Jayasekara R, Harding I, Bowate I, Lonergan G (2005) Biodegradability of a selected range of polymers and polymer blends and standard methods for assessment of biodegradation synthetic. J Polym Environ 13:231–251.  https://doi.org/10.1007/s10924-005-4758-2 CrossRefGoogle Scholar
  46. 46.
    Liu Y, Deng Y, Ping Chen, Duan M, Lin X, Zhang Y (2019) Biodegradation analysis of polyvinyl alcohol during the compost burial course. J Basic Microbiol 59:368–374CrossRefPubMedGoogle Scholar
  47. 47.
    Hashimoto W, Mishima Y, Miyake O, Nankai H, Momma K, Murata K (2005) Biodegradation of Alginate, Xanthan, and Gellan Part 9. Miscellaneous biopolymers and biodegradation of polymers. Wiley, HobokenGoogle Scholar
  48. 48.
    Jeon O, Bouhadir KH, Mansour JM, Alsberg E (2009) Photocrosslinked alginate hydrogels with tunable biodegradation rates and mechanical properties. Biomaterial 30:2724–2734.  https://doi.org/10.1016/j.biomaterials.2009.01.034 CrossRefGoogle Scholar
  49. 49.
    Ilčin M, Holá O, BakajováB Kučerıík J (2010) FT-IR study of gamma-radiation induced degradation of polyvinyl alcohol (PVA) and PVA/humic acids blends. J Radioanal Nucl Chem 283:9–13.  https://doi.org/10.1007/s10967-009-0321-2 CrossRefGoogle Scholar
  50. 50.
    Jayasekara R, Harding I, Bowater I, Lonergan GT (2005) Biodegradability of a selected range of polymers and polymer blends and standard methods for assessment of biodegradation. J Polym Environ 13:231–251.  https://doi.org/10.1007/s10924-005-4758-2 CrossRefGoogle Scholar
  51. 51.
    Jayasekara R, Harding I, Bowater I, Christieand GBY, Lonergan GT (2003) Biodegradation by Composting of Surface Modified Starch and PVA Blended Films. J Polym Environ 11:49–56.  https://doi.org/10.1023/A:1024219821633 CrossRefGoogle Scholar
  52. 52.
    Luckachan GE, Pillai CKS (2011) Biodegradable polymers- a review on recent trends and emerging perspectives. J Polym Environ 19:637–676.  https://doi.org/10.1023/A:1024219821633 CrossRefGoogle Scholar
  53. 53.
    Leja K, Lewandowicz G (2010) Polymer biodegradation and biodegradable polymers—a review. Pol J Environ Stud 19:255–266Google Scholar
  54. 54.
    Chiellini E, Corti A, D’Antone S, Solaro R (2003) Biodegradation of poly (vinyl alcohol) based materials. Prog Polym Sci 28:963–1014.  https://doi.org/10.1016/S0079-6700(02)00149-1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.CONACyT–Centro de Investigación en Química AplicadaApodacaMexico
  2. 2.CQMA-Nuclear and Energetic Research Institute IPEN-CNENSao PauloBrazil

Personalised recommendations