Advertisement

Synthesis of a novel post-metallocene titanium complex of chelating [ONOO]-type ligand and studies on the effect of an extra donor arm on its reactivity in aqueous emulsion polymerization

  • D. AgrawalEmail author
  • S. K. De
  • P. K. Singh
  • Y. Shrivastava
Original Paper
  • 26 Downloads

Abstract

In the present work, a new Ti complex LTiCl2 {LH2 = 2-(3,5-di-tert-butyl-2-hydroxybenzylamino)-succinic acid}-bearing tetradentate [ONOO] donors has been synthesized and used in the homopolymerization of methyl methacrylate and styrene in aqueous emulsion. The effect of co-catalyst NaBPh4 with ion-pair BPh 4 was also studied on the catalytic activity. Moreover, synthesized complex has been characterized by 1H NMR, UV–visible spectroscopy, infrared spectroscopy, high-resolution mass spectra and elemental analysis. The fabricated polymers have been tested using different characterizations, viz. 1H NMR, 13C NMR, DSC, DLS, XRD and GPC analysis. The GPC analysis reveals that polymer product obtained has high molecular weight, and the amorphous behavior of the polymer product was indicated by the XRD and DSC analysis. In addition to this, kinetic parameters like activation energy and rate constant for polymethyl methacrylate have also been examined.

Keywords

Non-metallocene catalyst Early transition metal Aqueous polymerization Polymethyl methacrylate Polystyrene 

Notes

Funding

This study was funded by Jaypee University of Engineering and Technology, Guna, 473226, India.

References

  1. 1.
    Shamiri A, Chakrabarti MH, Jahan S, Hussain MA, Kaminsky W, Aravind PV, Yehye WA (2014) The influence of Ziegler–Natta and metallocene catalysts on polyolefin structure, properties, and processing ability. Materials 7(7):5069–5108CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Böhm L (1978) Ethylene polymerization process with a highly active Ziegler–Natta catalyst: 1. Kinetics. Polymer 19(5):553–561CrossRefGoogle Scholar
  3. 3.
    Cossee P (1964) Ziegler–Natta catalysis I. Mechanism of polymerization of α-olefins with Ziegler–Natta catalysts. J Catal 3(1):80–88CrossRefGoogle Scholar
  4. 4.
    Quyoum R, Wang Q, Tudoret M-J, Baird MC, Gillis DJ (1994) eta. 5–C5Me5TiMe3B (C6F5) 3: a carbocationic olefin polymerization initiator masquerading as a Ziegler–Natta catalyst. J Am Chem Soc 116(14):6435–6436CrossRefGoogle Scholar
  5. 5.
    Mülhaupt R (2013) Green polymer chemistry and bio-based plastics: dreams and reality. Macromol Chem Phys 214(2):159–174CrossRefGoogle Scholar
  6. 6.
    Kaminsky W (2017) The discovery and evolution of metallocene-based olefin polymerization catalysts. Rendiconti Lincei 28(1):87–95CrossRefGoogle Scholar
  7. 7.
    Kaminsky W, Laban A (2001) Metallocene catalysis. Appl Catal A 222(1–2):47–61CrossRefGoogle Scholar
  8. 8.
    Baier MC, Zuideveld MA, Mecking S (2014) Post-metallocenes in the industrial production of polyolefins. Angew Chem Int Ed 53(37):9722–9744CrossRefGoogle Scholar
  9. 9.
    Rishina LA, Kissin YV, Lalayan SS, Gagieva SC, Tuskaev VA, Krasheninnikov VG (2017) Polymerization of alkenes with a post-metallocene catalyst containing a titanium complex with an oxyquinolinyl ligand. J Polym Sci Part A Polym Chem 55(11):1844–1854CrossRefGoogle Scholar
  10. 10.
    De SK, Sharma K, Sharma C (2018) Synthesis and catalytic performance of a new post-metallocene titanium complex having asymmetric tetradentate [ONSO]-type amino acid-based chelating ligand for acrylate polymerization at room temperature in aqueous emulsion. Colloid Polym Sci 296:107–119CrossRefGoogle Scholar
  11. 11.
    Iwashita A, Chan MC, Makio H, Fujita T (2014) Attractive interactions in olefin polymerization mediated by post-metallocene catalysts with fluorine-containing ancillary ligands. Catal Sci Technol 4(3):599–610CrossRefGoogle Scholar
  12. 12.
    Nakata N, Toda T, Ishii A (2011) Recent advances in the chemistry of Group 4 metal complexes incorporating [OSSO]-type bis (phenolato) ligands as post-metallocene catalysts. Polym Chem 2(8):1597–1610CrossRefGoogle Scholar
  13. 13.
    Rishina LA, Lalayan SS, Gagieva SC, Tuskaev VA, Perepelitsyna EO, Kissin YV (2013) Polymers of propylene and higher 1-alkenes produced with post-metallocene complexes containing a saligenin-type ligand. Polymer 54(24):6526–6535CrossRefGoogle Scholar
  14. 14.
    Sharma K, De SK (2016) A post-metallocene titanium (IV) complex bearing asymmetric tetradentate [ONNO]-type amino acid-based ligand and its activity toward polymerization of polar monomers at room temperature in aqueous emulsion. Colloid Polym Sci 294(12):2051–2070CrossRefGoogle Scholar
  15. 15.
    Yoshida Y, Matsui S, Takagi Y, Mitani M, Saito J, Ishii S-i, Nakano T, Tanaka H, Kashiwa N, Fujita T (2003) 132 PI catalysts: new titanium complexes having two pyrrolide-imine chelate ligands for olefin polymerization. In: Anpo M, Onaka M, Yamashita H (eds) Studies in surface science and catalysis, vol 145. Elsevier, pp 521–522.  https://doi.org/10.1016/S0167-2991(03)80289-6
  16. 16.
    Yoshida Y, Saito J, Mitani M, Takagi Y, Matsui S, Ishii S-i, Nakano T, Kashiwa N, Fujita T (2002) Living ethylene/norbornene copolymerisation catalyzed by titanium complexes having two pyrrolide-imine chelate ligands. Chem Commun 12:1298–1299CrossRefGoogle Scholar
  17. 17.
    Matsugi T, Matsui S, Kojoh S-i, Takagi Y, Inoue Y, Fujita T, Kashiwa N (2001) New titanium complexes having two indolide-imine chelate ligands for living ethylene polymerization. Chem Lett 30(6):566–567CrossRefGoogle Scholar
  18. 18.
    Matsugi T, Matsui S, Kojoh S-i, Takagi Y, Inoue Y, Nakano T, Fujita T, Kashiwa N (2002) New titanium complexes bearing two indolide–imine chelate ligands for the polymerization of ethylene. Macromolecules 35(13):4880–4887CrossRefGoogle Scholar
  19. 19.
    Yang Y, Wang Q, Cui D (2008) Isoprene polymerization with indolide-imine supported rare-earth metal alkyl and amidinate complexes. J Polym Sci Part A Polym Chem 46(15):5251–5262CrossRefGoogle Scholar
  20. 20.
    Li G, Lamberti M, Mazzeo M, Pappalardo D, Pellecchia C (2013) Isospecific polymerization of propene by new indolyl-pyridylamido Zr(IV) catalysts. J Mol Catal A Chem 370:28–34CrossRefGoogle Scholar
  21. 21.
    Li G, Lamberti M, D’Amora S, Pellecchia C (2010) C 1-symmetric pentacoordinate anilidopyridylpyrrolide zirconium (IV) complexes as highly isospecific olefin polymerization catalysts. Macromolecules 43(21):8887–8891CrossRefGoogle Scholar
  22. 22.
    Li G, Lamberti M, Roviello G, Pellecchia C (2012) New titanium and hafnium complexes bearing [–NNN–] pyrrolylpyridylamido ligands as olefin polymerization catalysts. Organometallics 31(19):6772–6778CrossRefGoogle Scholar
  23. 23.
    Agrawal D, Shrivastava Y, De S, Singh P (2019) Synthesis of post-metallocene catalyst and study of its olefin polymerization activity at room temperature in aqueous solution followed by prediction of yield. J Polym Res 26(7):167CrossRefGoogle Scholar
  24. 24.
    Biswas K, Prieto O, Goldsmith PJ, Woodward S (2005) Remarkably stable (Me3Al) 2· DABCO and stereoselective nickel-catalyzed AlR3 (R = Me, Et) additions to aldehydes. Angew Chem Int Ed 44(15):2232–2234CrossRefGoogle Scholar
  25. 25.
    Bochmann M, Sarsfield MJ (1998) Reaction of AlR3 with [CPh3][B (C6F5) 4]: facile degradation of [B (C6F5) 4]-by Transient “[AlR2]+”. Organometallics 17(26):5908–5912CrossRefGoogle Scholar
  26. 26.
    Matsugi T, Fujita T (2008) High-performance olefin polymerization catalysts discovered on the basis of a new catalyst design concept. Chem Soc Rev 37(6):1264–1277CrossRefPubMedGoogle Scholar
  27. 27.
    Iwashita A, Makio H, Fujita T (2011) Phenoxy–imine group 4 metal complexes for olefin (co) polymerization including polar monomer copolymerization. In: Campora J, Giambastiani G (eds) Olefin upgrading catalysis by nitrogen-based metal complexes II, Catalysis by Metal Complexes, vol 36. Springer, Dordrecht.  https://doi.org/10.1007/978-94-007-0696-5_1 CrossRefGoogle Scholar
  28. 28.
    Bauers FM, Mecking S (2001) Aqueous homo-and copolymerization of ethylene by neutral nickel(II) complexes. Macromolecules 34(5):1165–1171CrossRefGoogle Scholar
  29. 29.
    De SK, Bhattacharjee M (2013) Titanium (IV) nonmetallocene complex catalyzed aqueous homopolymerization and copolymerization of styrene and methyl methacrylate: an Environmentally friendly approach to ultrahigh molecular weight polymer nanoparticles. J Polym Sci Part A Polym Chem 51(7):1540–1549CrossRefGoogle Scholar
  30. 30.
    Wehrmann P, Zuideveld M, Thomann R, Mecking S (2006) Copolymerization of ethylene with 1-butene and norbornene to higher molecular weight copolymers in aqueous emulsion. Macromolecules 39(18):5995–6002CrossRefGoogle Scholar
  31. 31.
    Soula R, Novat C, Tomov A, Spitz R, Claverie J, Drujon X, Malinge J, Saudemont T (2001) Catalytic polymerization of ethylene in emulsion. Macromolecules 34(7):2022–2026CrossRefGoogle Scholar
  32. 32.
    Groysman S, Goldberg I, Kol M, Genizi E, Goldschmidt Z (2003) From THF to furan: activity tuning and mechanistic insight via sidearm donor replacement in group IV amine bis (phenolate) polymerization catalysts. Organometallics 22(15):3013–3015CrossRefGoogle Scholar
  33. 33.
    Al-Harbi A, Hammond MJ, Parkin G (2018) Organometallic zirconium compounds in an oxygen-rich coordination environment: synthesis and structural characterization of tris (oxoimidazolyl) hydroboratozirconium compounds. Inorg Chem 57:1426–1437CrossRefPubMedGoogle Scholar
  34. 34.
    Toney JH, Marks TJ (1985) Hydrolysis chemistry of the metallocene dichlorides M(.eta.5-C5H5)2Cl2, M = titanium, vanadium, or zirconium. Aqueous kinetics, equilibria, and mechanistic implications for a new class of antitumor agents. J Am Chem Soc 107(4):947–953.  https://doi.org/10.1021/ja00290a033 CrossRefGoogle Scholar
  35. 35.
    Wilkinson G, Birmingham JM (1954) Bis-cyclopentadienyl compounds of Ti, Zr, V, Nb and Ta. J Am Chem Soc 76(17):4281–4284.  https://doi.org/10.1021/ja01646a008 CrossRefGoogle Scholar
  36. 36.
    Doyle G, Tobias RS (1967) Synthesis of. beta.-diketonate chelates of the bis(cyclopentadienyl)titanium(IV) moiety: infrared and proton magnetic resonance spectra. Inorg Chem 6(6):1111–1115.  https://doi.org/10.1021/ic50052a010 CrossRefGoogle Scholar
  37. 37.
    De SK, Bhattacharjee M (2009) An environmentally benign room temperature aqueous homo- and copolymerization of styrene and methylmethacrylate catalyzed by [Cp2TiCl2]/NaBPh4. J Polym Sci Part A Polym Chem 47(23):6496–6503.  https://doi.org/10.1002/pola.23692 CrossRefGoogle Scholar
  38. 38.
    De SK, Bhattacharjee M (2011) Synthesis of high molecular weight polymer nanoparticles by [Cp2ZrCl2] catalyzed emulsion polymerization. J Polym Sci Part A Polym Chem 49(18):3920–3927.  https://doi.org/10.1002/pola.24830 CrossRefGoogle Scholar
  39. 39.
    Bovey F, Hood F III, Anderson E, Snyder L (1965) Polymer NMR spectroscopy. XI. Polystyrene and polystyrene model compounds. J Chem Phys 42(11):3900–3910CrossRefGoogle Scholar
  40. 40.
    Ishihara N, Seimiya T, Kuramoto M, Uoi M (1986) Crystalline syndiotactic polystyrene. Macromolecules 19(9):2464–2465.  https://doi.org/10.1021/ma00163a027 CrossRefGoogle Scholar
  41. 41.
    Feil F, Harder S (2003) New stereochemical assignments of 13C NMR signals for predominantly syndiotactic polystyrene. Macromolecules 36(9):3446–3448.  https://doi.org/10.1021/ma0342473 CrossRefGoogle Scholar
  42. 42.
    Claudy P, Letoffe J, Camberlain Y, Pascault J (1983) Glass transition of polystyrene versus molecular weight. Polym Bull 9(4–5):208–215CrossRefGoogle Scholar
  43. 43.
    Kitayama T, Masuda E, Yamaguchi M, Nishiura T, Hatada K (1992) Syndiotactic-specific polymerization of methacrylates by tertiary phosphine-triethylaluminum. Polym J 24(8):817CrossRefGoogle Scholar
  44. 44.
    Hatada K (1999) Stereoregular uniform polymers. J Polym Sci Part A Polym Chem 37(3):245–260.  https://doi.org/10.1002/(SICI)1099-0518(19990201)37:3%3c245:AID-POLA1%3e3.0.CO;2-9 CrossRefGoogle Scholar
  45. 45.
    Yan W, Li H, Shen X (2005) Three-dimensionally ordered macroporous syndiotactic polystyrene: preparation and characterization. Macromol Rapid Commun 26(7):564–568CrossRefGoogle Scholar
  46. 46.
    Harrar-Ferfera H, Amrani F (2008) Polymerization of methyl methacrylate with nickel(II)α-benzoinoxime complex. J Appl Polym Sci 108(3):1514–1522.  https://doi.org/10.1002/app.24711 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • D. Agrawal
    • 1
    Email author
  • S. K. De
    • 3
  • P. K. Singh
    • 1
  • Y. Shrivastava
    • 2
  1. 1.Department of ChemistryJaypee University of Engineering and TechnologyGunaIndia
  2. 2.Department of Mechanical EngineeringJaypee University of Engineering and TechnologyGunaIndia
  3. 3.Department of ChemistryBangabasi Evening CollegeKolkataIndia

Personalised recommendations