Advertisement

Thienoisoindigo-based donor–acceptor random copolymers: synthesis, characterization, and thin film nanostructure study

  • Kazuhiro NakabayashiEmail author
  • Kosei Miyakawa
  • Hideharu Mori
Original Paper
  • 1 Downloads

Abstract

Donor–acceptor (D–A) random copolymers containing thienoisoindigo (TIG), diketopyrrolopyrrole (DPP), and benzothiadiazole (BT) acceptor units (Pa1-5 with TIG/DPP acceptor units, and Pb1-5 with TIG/BT acceptor units) have been developed. The typical Stille cross-coupling polymerization afforded D–A random copolymers with various acceptor compositions by adjusting monomer feed ratios. The obtained polymers exhibited the excellent light absorption by utilizing intramolecular charge transfer between donor and acceptor units. In particular, one of random copolymers with TIG/BT acceptor units (Pb2) accomplished the wide-range absorption in the range of 300–1400 nm in the thin film state. In the cyclic voltammetry analysis, the HOMO levels of polymers were successfully tunable in the wide range of − 4.86 to − 5.25 eV. The obtained results demonstrated that the D–A random copolymer could be a promising design for tailored and wide tuning of polymer properties, leading to the development of conjugated polymeric materials and their optoelectrical applications.

Keywords

Conjugated polymer Donor–acceptor structure Random copolymer Thienoisoindigo Diketopyrrolopyrrole Benzothiadiazole 

Notes

Supplementary material

289_2019_2956_MOESM1_ESM.docx (399 kb)
Supplementary material 1 (DOCX 399 kb)

References

  1. 1.
    Günes S, Neugebauer H, Sariciftci NS (2007) Conjugated polymer-based organic solar cells. Chem Rev 107:1324–1338CrossRefGoogle Scholar
  2. 2.
    Boudreault PTL, Najari A, Leclerc M (2011) Processable low-bandgap polymers for photovoltaic applications. Chem Mater 23:456–469CrossRefGoogle Scholar
  3. 3.
    Zhou H, Yang L, You W (2012) Rational design of high performance conjugated polymers for organic solar cells. Macromolecules 45:607–632CrossRefGoogle Scholar
  4. 4.
    Allard S, Forster M, Souharce B, Thiem H, Scherf U (2008) Organic semiconductors for solution-processable field-effect transistors (OFETs). Angew Chem Int Ed 47:4070–4098CrossRefGoogle Scholar
  5. 5.
    Chou YH, Chang HC, Liu CL, Chen WC (2015) Polymeric charge storage electrets for non-volatile organic field effect transistor memory devices. Polym Chem 6:341–352CrossRefGoogle Scholar
  6. 6.
    Facchetti A (2011) π-conjugated polymers for organic electronics and photovoltaic cell applications. Chem Mater 23:733–758CrossRefGoogle Scholar
  7. 7.
    Szarko JM, Guo J, Rolczynski BS, Chen LX (2011) Current trends in the optimization of low band gap polymers in bulk heterojunction photovoltaic devices. J Mater Chem 21:7849–7857CrossRefGoogle Scholar
  8. 8.
    Ha JS, Kim KH, Choi DH (2011) 2,5-Bis(2-octyldodecyl)pyrrolo[3,4-c]pyrrole-1,4-(2H,5H)-dione-based donor-acceptor alternating copolymer bearing 5,5′-Di(thiophen-2-yl)-2,2′-biselenophene exhibiting 1.5 cm2 V−1 s−1 hole mobility in thin-film transistors. J Am Chem Soc 133:10364–10367CrossRefGoogle Scholar
  9. 9.
    Beaujuge PM, Pisula W, Tsao HK, Ellinger S, Müllen K, Reynolds JR (2009) Tailoring structure-property relationships in dithienosilole–benzothiadiazole donor–acceptor copolymers. J Am Chem Soc 131:7514–7515CrossRefGoogle Scholar
  10. 10.
    Zhan X, Facchetti A, Barlow S, Marks TJ, Ratner MA, Wasielewski MR, Marder SR (2011) Rylene and related diimides for organic electronics. Adv Mater 23:268–284CrossRefGoogle Scholar
  11. 11.
    Hwang YJ, Courtright BAE, Ferreira AS, Tolbert SH, Jenekhe SA (2015) 7.7% efficient all-polymer solar cells. Adv Mater 27:4578–4584CrossRefGoogle Scholar
  12. 12.
    Zhao J, Li Y, Yang G, Jiang K, Lin H, Ade H, Ma W, Yan H (2016) Efficient organic solar cells processed from hydrocarbon solvents. Nat Energy 1:15027–15033CrossRefGoogle Scholar
  13. 13.
    Hwang YJ, Li H, Courtright BAE, Subramaniyan S, Jenekhe SA (2016) Nonfullerene polymer solar cells with 8.5% efficiency enabled by a new highly twisted electron acceptor dimer. Adv Mater 28:124–131CrossRefGoogle Scholar
  14. 14.
    Kim G, Kang SJ, Dutta GK, Han YK, Shin TJ, Noh YY, Yang CA (2014) Thienoisoindigo-Naphthalene polymer with ultrahigh mobility of 14.4 cm2 V−1s−1 that substantially exceeds benchmark values for amorphous silicon semiconductors. J Am Chem Soc 136:9477–9483CrossRefGoogle Scholar
  15. 15.
    Braunecker WA, Oosterhout SD, Owczarczyk ZR, Kopidakis N, Ratcliff EL, Ginley DS, Olson DC (2014) Semi-random vs well-defined alternating donor–acceptor copolymers. ACS Macro Lett 3:622–627CrossRefGoogle Scholar
  16. 16.
    Hendriks KH, Heintges GHL, Wienk MM, Janssen RAJ (2014) Comparing random and regular diketopyrrolopyrrole–bithiophene–thienopyrrolodione terpolymers for organic photovoltaics. J Mater Chem A 2:17899–17905CrossRefGoogle Scholar
  17. 17.
    Kang TE, Choi J, Cho HH, Yoon SC, Kim BJ (2016) Donor–acceptor random versus alternating copolymers for efficient polymer solar cells: importance of optimal composition in random copolymers. Macromolecules 49:2096–2105CrossRefGoogle Scholar
  18. 18.
    Ashraf RS, Kronemeijer AJ, James DI, Sirringhaus H, McCulloch I (2012) A new thiophene substituted isoindigo based copolymer for high performance ambipolar transistors. Chem Commun 48:3939–3941CrossRefGoogle Scholar
  19. 19.
    Glowacki ED, Voss G, Sariciftci NS (2013) 25th anniversary article: progress in chemistry and applications of functional indigos for organic electronics. Adv Mater 25:6783–6800CrossRefGoogle Scholar
  20. 20.
    Chen CM, Sharma S, Li YL, Lee JJ, Chen SA (2015) Thienoisoindigo-based copolymer with fused thieno[3,2-b]thiophene as a donor in thin film transistor applications with high performance. J Mater Chem C 3:33–36CrossRefGoogle Scholar
  21. 21.
    Nakabayashi K, Fukuzawa H, Fujita K, Mori H (2018) Direct arylation synthesis of thienoisoindigo-based low-band-gap polymer from asymmetric donor–acceptor monomer. J Polym Sci, Part A: Polym Chem 56:430–436CrossRefGoogle Scholar
  22. 22.
    Bronstein H, Chen Z, Ashraf RS, Zhang W, Du J, Durrant JR, Tuladhar PS, Song K, Watkins SE, Geerts Y, Wienk M, Janssen RAJ, Anthopoulos T, Sirringhaus H, Heeney M, McCulloch I (2011) Thieno[3,2-b]thiophene–diketopyrrolopyrrole-containing polymers for high-performance organic field-effect transistors and organic photovoltaic devices. J Am Chem Soc 133:3272–3275CrossRefGoogle Scholar
  23. 23.
    Bijleveld JC, Gevaerts VS, Nuzzo DN, Turbiez M, Mathijssen SGJ, de Leeuw DM, Wienk MM, Janssen RAJ (2010) Efficient solar cells based on an easily accessible diketopyrrolopyrrole polymer. Adv Mater 22:E242–E246CrossRefGoogle Scholar
  24. 24.
    Li Z, Xu X, Zhang W, Genene Z, Mammo W, Yartsev A, Andersson MR, Janssen RAJ, Wang E (2016) High photovoltage all-polymer solar cells based on a diketopyrrolopyrrole–isoindigo acceptor polymer. J Mater Chem A 5:11693–11700CrossRefGoogle Scholar
  25. 25.
    Mohammad L, Chen Q, Mitul A, Sun J, Khatiwada D, Vaagensmith B, Zhang C, Li J, Qiao Q (2015) Improved performance for inverted organic photovoltaics via spacer between benzodithiophene and benzothiazole in polymers. J Phys Chem C 119:18992–19000CrossRefGoogle Scholar
  26. 26.
    Cui R, Zou Y, Xiao L, Hsu CS, Keshtov ML, Godovsky DY, Li Y (2015) Efficient solar cells based on a new polymer from fluorinated benzothiadiazole and alkylthienyl substituted thieno[2,3-f]benzofuran. Dyes Pigm 116:139–145CrossRefGoogle Scholar
  27. 27.
    Schroeder BC, Rossbauer S, Kline RJ, Biniek L, Watkins SE, Anthopoulos TD, McCulloch I, Nielsen CB (2014) Benzotrithiophene copolymers: influence of molecular packing and energy levels on charge carrier mobility. Macromolecules 47:2883–2890CrossRefGoogle Scholar
  28. 28.
    Pavlishchuk VV, Addison AW (2000) Conversion constants for redox potentials measured versus different reference electrodes in acetonitrile solutions at 25 C. Inorg Chem Acta 298:97–102CrossRefGoogle Scholar
  29. 29.
    Szumilo MM, Gann EH, McNeill CR, Lemaur V, Oliver Y, Thomsen L, Vaynzof Y, Sommer M, Sirringhaus H (2014) Structure influence on charge transport in naphthalenediimide–thiophene copolymers. Chem Mater 26:6796–6804CrossRefGoogle Scholar
  30. 30.
    Koizumi Y, Ide M, Saeki A, Vijayakumar C, Balan B, Kawamoto M, Seki S (2013) Thienoisoindigo-based low-band gap polymers for organic electronic devices. Polym Chem 4:484–494CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Graduate School of Organic Materials ScienceYamagata UniversityYonezawaJapan

Personalised recommendations