Mono-/competitive adsorption of cadmium(II) and lead(II) using straw/bentonite-g-poly(acrylic acid-co-acrylamide) resin

  • Zhonghua Wang
  • Wei Zhou
  • Liang ZhuEmail author
Original Paper


We investigated the adsorption of Cd2+ and Pb2+ using straw/bentonite-g-poly(acrylic acid-co-acrylamide) resin as an adsorbent in single and binary-component systems. The resin was characterized by various analytical techniques. Adsorption experiments were conducted by varying the pH, adsorbent dosage, initial concentration and temperature. Adsorption data for Cd2+ and Pb2+ fitted the Langmuir isotherm in the single-component system. Kinetic data for Cd2+ and Pb2+ followed the pseudo-second-order kinetic in a single-component system. A maximum adsorption for Cd2+ occurred at pH 5, whereas for Pb2+, the maximum Cd2+ adsorption occurred at pH 3. The maximum Cd2+ and Pb2+ adsorption capacities were 315.1 mg g−1 and 355.5 mg g−1, respectively. In the binary-component system, the presence of Cd2+ could improve the adsorption capacity of Pb2+ and the presence of Pb2+ could reduce the adsorption capacity of Cd2+ when the Cd2+ concentration was high. This study provides realistic and valid data on resin use to remove heavy metal ions from aqueous solutions.


Adsorption Binary-component system Bentonite Heavy metal Resin Rice straw 



This thesis is financed by Jiang Su Provincial “Youth Blue” (Cradle for Young Scholars Development) Project for Higher Education and National Natural Science Foundation of China (Grant No. 51779075).

Supplementary material

289_2019_2939_MOESM1_ESM.docx (1.5 mb)
Supplementary material 1 (DOCX 1540 kb)


  1. 1.
    Du L, Yu R, Wang H, Lu Y, Liu Z (2013) Pollution and toxicity of cadmium: a review of recent studies. J Environ Health 2:167–174Google Scholar
  2. 2.
    Dawei C, Junhua P, Xiujun T et al (2014) Effects of exposure to lead and cadmium on the oxidative damage of livers in laying hens. Anim Husb Feed Sci 5:249–253Google Scholar
  3. 3.
    Matlock MM, Howerton BS, Atwood DA (2002) Chemical precipitation of heavy metals from acid mine drainage. Water Res 36:4757–4764CrossRefGoogle Scholar
  4. 4.
    Charerntanyarak L (1999) Heavy metals removal by chemical coagulation and precipitation. Water Sci Technol 39:135CrossRefGoogle Scholar
  5. 5.
    Silva JED, Paiva A, Soares D, Labrincha A, Castro F (2005) Solvent extraction applied to the recovery of heavy metals from galvanic sludge. J Hazard Mater 120:113–118CrossRefGoogle Scholar
  6. 6.
    Blöcher C, Dorda J, Mavrov V, Chmiel H, Lazaridis N, Matis K (2003) Hybrid flotation—membrane filtration process for the removal of heavy metal ions from wastewater. Water Res 37:4018–4026CrossRefGoogle Scholar
  7. 7.
    Da̧browski A, Hubicki Z, Podkościelny P, Robens E (2004) Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere 56:91–106CrossRefGoogle Scholar
  8. 8.
    Hunsom M, Pruksathorn K, Damronglerd S, Vergnes H, Duverneuil P (2005) Electrochemical treatment of heavy metals (Cu2+, Cr6+, Ni2+) from industrial effluent and modeling of copper reduction. Water Res 39:610–616CrossRefGoogle Scholar
  9. 9.
    Jayasantha Kumari H, Krishnamoorthy P, Arumugam TK (2017) An efficient removal of crystal violet dye from waste water by adsorption onto TLAC/Chitosan composite: a novel low cost adsorbent. Int J Biol Macromol 96:324–333CrossRefGoogle Scholar
  10. 10.
    Zahra B, Ali A, Bagher E-S (2019) Double network hydrogel of sodium alginate/polyacrylamide cross-linked with POSS: swelling, dye removal and mechanical properties. Int J Biol Macromol 129:187–197CrossRefGoogle Scholar
  11. 11.
    Eftekhari-Sis B, Rahimkhoei V, Akbari A (2018) Cubic polyhedral oligomeric silsesquioxane nano-cross-linked hybrid hydrogels: synthesis, characterization, swelling and dye adsorption properties. React Funct Polym 128(128):47–57CrossRefGoogle Scholar
  12. 12.
    Bagher E-S, Ali A, Parisa YM, Zahra B, Nasser A (2018) Dye adsorption on cubic polyhedral oligomeric silsesquioxane-based poly(acrylamide-co-itaconic acid) hybrid nanocomposites: kinetic, thermodynamic and isotherms studies. J Inorg Organomet Polym Mater 28:1728–1738CrossRefGoogle Scholar
  13. 13.
    Ali A, Nasser A (2016) Organic–inorganic incompletely condensed polyhedral oligomeric silsesquioxane-based nanohybrid: synthesis, characterization and dye removal. Polym Plast Technol Eng 55(15):1586–1594CrossRefGoogle Scholar
  14. 14.
    Ahmed EM (2015) Hydrogel: preparation, characterization, and applications: A review. J Adv Res 6:105–121CrossRefGoogle Scholar
  15. 15.
    Samiey B, Cheng C-H, Wu J (2014) Organic–inorganic hybrid polymers as adsorbents for removal of heavy metal ions from solutions: a review. Materials 7:673–726CrossRefGoogle Scholar
  16. 16.
    Zohuriaan-Mehr M, Pourjavadi A, Salimi H, Kurdtabar M (2009) Protein-and homo poly(amino acid)-based hydrogels with super-swelling properties. Polym Adv Technol 20:655–671CrossRefGoogle Scholar
  17. 17.
    Ismail H, Irani M, Ahmad Z (2013) Starch-based hydrogels: present status and applications. Int J Polym Mater Polym Biomater 62:411–420CrossRefGoogle Scholar
  18. 18.
    Sawut A, Yimit M, Sun W, Nurulla I (2014) Photopolymerisation and characterization of maleylatedcellulose-g-poly(acrylic acid) superabsorbent polymer. Carbohydr Polym 101:231–239CrossRefGoogle Scholar
  19. 19.
    Ngah WW, Teong L, Hanafiah M (2011) Adsorption of dyes and heavy metal ions by chitosan composites: a review. Carbohydr Polym 83:1446–1456CrossRefGoogle Scholar
  20. 20.
    Chen L-F, Liang H-W, Lu Y, Cui C-H, Yu S-H (2011) Synthesis of an attapulgite clay@ carbon nanocomposite adsorbent by a hydrothermal carbonization process and their application in the removal of toxic metal ions from water. Langmuir 27:8998–9004CrossRefGoogle Scholar
  21. 21.
    Futalan CM, Kan C-C, Dalida ML, Hsien K-J, Pascua C, Wan M-W (2011) Comparative and competitive adsorption of copper, lead, and nickel using chitosan immobilized on bentonite. Carbohydr Polym 83:528–536CrossRefGoogle Scholar
  22. 22.
    Liu ZH, Ban GD, Jiang ZQ et al (2017) Absorbing properties of nickalloy/iron package mica powder composite absorbing materials. J Comput Theor Nanosci 14(4):1794–1800CrossRefGoogle Scholar
  23. 23.
    Bao Y, Ma J, Li N (2011) Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly(AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel. Carbohydr Polym 84:76–82CrossRefGoogle Scholar
  24. 24.
    Anirudhan T, Tharun A, Rejeena S (2011) Investigation on poly(methacrylic acid)-grafted cellulose/bentonite superabsorbent composite: synthesis, characterization, and adsorption characteristics of bovine serum albumin. Ind Eng Chem Res 50:1866–1874CrossRefGoogle Scholar
  25. 25.
    Liu J, Li Q, Su Y, Yue Q, Gao B, Wang R (2013) Synthesis of wheat straw cellulose-g-poly(potassium acrylate)/PVA semi-IPNs superabsorbent resin. Carbohydr Polym 94:539–546CrossRefGoogle Scholar
  26. 26.
    Ma Z, Li Q, Yue Q, Gao B, Xu X, Zhong Q (2011) Synthesis and characterization of a novel super-absorbent based on wheat straw. Biores Technol 102:2853–2858CrossRefGoogle Scholar
  27. 27.
    Wu F, Zhang Y, Liu L, Yao J (2012) Synthesis and characterization of a novel cellulose-g-poly(acrylic acid-co-acrylamide) superabsorbent composite based on flax yarn waste. Carbohydr Polym 87:2519–2525CrossRefGoogle Scholar
  28. 28.
    Spagnol C, Rodrigues FH, Pereira AG, Fajardo AR, Rubira AF, Muniz EC (2012) Superabsorbent hydrogel composite made of cellulose nanofibrils and chitosan-graft-poly(acrylic acid). Carbohydr Polym 87:2038–2045CrossRefGoogle Scholar
  29. 29.
    Güçlü G, Al E, Emik S, İyim TB, Özgümüş S, Özyürek M (2010) Removal of Cu2+ and Pb2+ ions from aqueous solutions by starch-graft-acrylic acid/montmorillonite superabsorbent nanocomposite hydrogels. Polym Bull 65:333–346CrossRefGoogle Scholar
  30. 30.
    Guo X, Du B, Wei Q, Yang J, Hu L, Yan L, Xu W (2014) Synthesis of amino functionalized magnetic graphenes composite material and its application to remove Cr(VI), Pb(II), Hg(II), Cd (II) and Ni (II) from contaminated water. J Hazard Mater 278:211–220CrossRefGoogle Scholar
  31. 31.
    Ren H, Gao Z, Wu D, Jiang J, Sun Y, Luo C (2016) Efficient Pb(II) removal using sodium alginate–carboxymethyl cellulose gel beads: preparation, characterization, and adsorption mechanism. Carbohydr Polym 137:402–409CrossRefGoogle Scholar
  32. 32.
    Wang F, Pan Y, Cai P, Guo T, Xiao H (2017) Single and binary adsorption of heavy metal ions from aqueous solutions using sugarcane cellulose-based adsorbent. Biores Technol 241:482–490CrossRefGoogle Scholar
  33. 33.
    Sha H, Wu Y, Fan Y (2018) Utilization of industrial waste as a novel adsorbent: mono/competitive adsorption of chromium (VI) and nickel (II) using diatomite waste modified by EDTA. Appl Organomet Chem 32:e3977CrossRefGoogle Scholar
  34. 34.
    Günay A, Arslankaya E, Tosun I (2007) Lead removal from aqueous solution by natural and pretreated clinoptilolite: adsorption equilibrium and kinetics. J Hazard Mater 146:362–371CrossRefGoogle Scholar
  35. 35.
    Ma Y, Lv L, Guo Y, Fu Y, Shao Q, Wu T, Guo S, Sun K, Guo X, Wujcik EK (2017) Porous lignin based poly(acrylic acid)/organo-montmorillonite nanocomposites: swelling behaviors and rapid removal of Pb(II) ions. Polymer 128:12–23CrossRefGoogle Scholar
  36. 36.
    Wang DJ, Chen H, Xu H, Sun JM, Xu YY (2014) Preparation of wheat straw matrix-g-polyacrylonitrile-based adsorbent by SET-LRP and its applications for heavy metal ion removal. ACS Sustain Chem Eng 2:1843–1848CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Environmental EngineeringHohai UniversityNanjingChina
  2. 2.Taizhou Polytechnic CollegeTaizhouChina
  3. 3.Hohai UniversityNanjingChina

Personalised recommendations