Nanoparticle opsonization: forces involved and protection by long chain polymers

  • Taha Umair Wani
  • Syed Naiem Raza
  • Nisar Ahmad KhanEmail author
Review Paper


The interactions between nanoparticles and opsonins have been studied thoroughly through various models in order to elucidate the basic underlying forces of such interactions. The results of these studies give an insight about the nature of interactions and help devising methods for inhibiting opsonization. Opsonization poses major hindrance in functioning of nanoparticles. A number of forces like electrostatic, hydrophobic, van der Waal forces, etc., are involved. Among the techniques used for nanoparticle protection, PEGylation has been extensively studied and used to increase circulation times of nanoparticles. Polyethylene glycol (PEG) and PEG-like and other hydrophilic polymers with long chains have flexible nature that helps reduce opsonin adsorption on nanoparticles and hence make them stealth and unrecognized by elimination mechanisms of our body. It is suggested that polymer chain length is significant in reducing interactions between nanoparticles and opsonins. This review gives an outlook of driving forces of particulate adsorption and various mechanisms of how polymer chain length affects protein–particulate interactions.

Graphic abstract


Nanoparticles Opsoninization Adsorption Chain length PEGylation 


Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Human and animal rights

This article does not contain any studies with human or animal subjects performed by any of the authors.


  1. 1.
    Cui W, Li J, Decher G (2016) Self-assembled smart nanocarriers for targeted drug delivery. Adv Mater 28(6):1302–1311CrossRefPubMedGoogle Scholar
  2. 2.
    Li X, Yu Y, Ji Q, Qiu L (2015) Targeted delivery of anticancer drugs by aptamer AS1411 mediated Pluronic F127/cyclodextrin-linked polymer composite micelles. Nanomed-Nanotechnol 11(1):175–184CrossRefGoogle Scholar
  3. 3.
    Masood F (2016) Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Mater Sci Eng C 60:569–578CrossRefGoogle Scholar
  4. 4.
    Ulbrich K, Hola K, Subr V, Bakandritsos A, Tucek J, Zboril R (2016) Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release control, and clinical studies. Chem Rev 116(9):5338–5431CrossRefPubMedGoogle Scholar
  5. 5.
    Habibi N, Kamaly N, Memic A, Shafiee H (2016) Self-assembled peptide-based nanostructures: smart nanomaterials toward targeted drug delivery. Nano Today 11(1):41–60CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Tian H, Chen J, Chen X (2013) Nanoparticles for gene delivery. Small 9(12):2034–2044CrossRefPubMedGoogle Scholar
  7. 7.
    Qiu F, Fujita S, Mhanna R, Zhang L, Simona BR, Nelson BJ (2015) Magnetic helical microswimmers functionalized with lipoplexes for targeted gene delivery. Adv Funct Mater 25(11):1666–1671CrossRefGoogle Scholar
  8. 8.
    Niu Z, Conejos-Sanchez I, Griffin BT, O’Driscoll CM, Alonso MJ (2016) Lipid-based nanocarriers for oral peptide delivery. Adv Drug Deliv Rev 106:337–354CrossRefPubMedGoogle Scholar
  9. 9.
    Pagels RF, Prud’homme RK (2015) Polymeric nanoparticles and microparticles for the delivery of peptides, biologics, and soluble therapeutics. J Control Release 219:519–535CrossRefPubMedGoogle Scholar
  10. 10.
    Arami H, Khandhar A, Liggitt D, Krishnan KM (2015) In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. Chem Soc Rev 44(23):8576–8607CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Tran N, Webster TJ (2010) Magnetic nanoparticles: biomedical applications and challenges. J Mater Chem 20(40):8760–8767CrossRefGoogle Scholar
  12. 12.
    Markides H, Rotherham M, El Haj A (2012) Biocompatibility and toxicity of magnetic nanoparticles in regenerative medicine. J Nanomater 2012:13CrossRefGoogle Scholar
  13. 13.
    Chou LY, Ming K, Chan WC (2011) Strategies for the intracellular delivery of nanoparticles. Chem Soc Rev 40(1):233–245CrossRefPubMedGoogle Scholar
  14. 14.
    Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5(3):161CrossRefPubMedGoogle Scholar
  15. 15.
    Rosenholm JM, Sahlgren C, Lindén M (2010) Towards multifunctional, targeted drug delivery systems using mesoporous silica nanoparticles–opportunities and challenges. Nanoscale 2(10):1870–1883CrossRefPubMedGoogle Scholar
  16. 16.
    Gustafson HH, Holt-Casper D, Grainger DW, Ghandehari H (2015) Nanoparticle uptake: the phagocyte problem. Nano Today 10(4):487–510CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Bertrand N, Grenier P, Mahmoudi M, Lima EM, Appel EA, Dormont F, Lim J-M, Karnik R, Langer R, Farokhzad OC (2017) Mechanistic understanding of in vivo protein corona formation on polymeric nanoparticles and impact on pharmacokinetics. Nat Commun 8(1):777CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Li M, Zou P, Tyner K, Lee S (2017) Physiologically based pharmacokinetic (PBPK) modeling of pharmaceutical nanoparticles. AAPS J 19(1):26–42CrossRefPubMedGoogle Scholar
  19. 19.
    Blanco E, Shen H, Ferrari M (2015) Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 33(9):941CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Fleischer CC, Payne CK (2014) Nanoparticle–cell interactions: molecular structure of the protein corona and cellular outcomes. Acc Chem Res 47(8):2651–2659CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Casals E, Pfaller T, Duschl A, Oostingh GJ, Puntes V (2010) Time evolution of the nanoparticle protein corona. ACS Nano 4(7):3623–3632CrossRefPubMedGoogle Scholar
  22. 22.
    Chen H, Wang L, Yeh J, Wu X, Cao Z, Wang YA, Zhang M, Yang L, Mao H (2010) Reducing non-specific binding and uptake of nanoparticles and improving cell targeting with an antifouling PEO-b-PγMPS copolymer coating. Biomaterials 31(20):5397–5407CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Riabov V, Gudima A, Kzhyshkowska J (2018) Macrophage-mediated foreign body responses. In: Vrana NE (ed) Cell and material interface: advances in tissue engineering, biosensor, implant, and imaging technologies. Taylor & Francis, Routledge, p 245Google Scholar
  24. 24.
    Moghimi S, Simberg D (2017) Complement activation turnover on surfaces of nanoparticles. Nano Today 15:8–10CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Van Hong NB-J (2017) Protein corona: a new approach for nanomedicine design. Int J Nanomed 12:3137CrossRefGoogle Scholar
  26. 26.
    Chonn A, Semple S, Cullis P (1992) Association of blood proteins with large unilamellar liposomes in vivo. Relation to circulation lifetimes. J Biol Chem 267(26):18759–18765PubMedGoogle Scholar
  27. 27.
    Kiwada H, Miyajima T, Kato Y (1987) Studies on the uptake mechanism of liposomes by perfused rat liver. II. An indispensable factor for liver uptake in serum. Chem Pharm Bull 35(3):1189–1195CrossRefPubMedGoogle Scholar
  28. 28.
    Mahmoudi M, Lynch I, Ejtehadi MR, Monopoli MP, Bombelli FB, Laurent S (2011) Protein–nanoparticle interactions: opportunities and challenges. Chem Rev 111(9):5610–5637CrossRefPubMedGoogle Scholar
  29. 29.
    Lee YK, Choi E-J, Webster TJ, Kim S-H, Khang D (2015) Effect of the protein corona on nanoparticles for modulating cytotoxicity and immunotoxicity. Int J Nanomed 10:97Google Scholar
  30. 30.
    Lynch I, Cedervall T, Lundqvist M, Cabaleiro-Lago C, Linse S, Dawson KA (2007) The nanoparticle–protein complex as a biological entity; a complex fluids and surface science challenge for the 21st century. Adv Colloid Interface Sci 134:167–174CrossRefPubMedGoogle Scholar
  31. 31.
    Göppert TM, Müller RH (2005) Protein adsorption patterns on poloxamer-and poloxamine-stabilized solid lipid nanoparticles (SLN). Eur J Pharm Biopharm 60(3):361–372CrossRefPubMedGoogle Scholar
  32. 32.
    Walkey CD, Olsen JB, Guo H, Emili A, Chan WC (2012) Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J Am Chem Soc 134(4):2139–2147CrossRefPubMedGoogle Scholar
  33. 33.
    Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WA, Seaton A, Stone V, Brown S, MacNee W, Donaldson K (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotech 3(7):423–428CrossRefGoogle Scholar
  34. 34.
    Vertegel AA, Siegel RW, Dordick JS (2004) Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme. Langmuir 20(16):6800–6807CrossRefPubMedGoogle Scholar
  35. 35.
    Göppert TM, Müller RH (2005) Polysorbate-stabilized solid lipid nanoparticles as colloidal carriers for intravenous targeting of drugs to the brain: comparison of plasma protein adsorption patterns. J Drug Target 13(3):179–187CrossRefPubMedGoogle Scholar
  36. 36.
    Otsuka H, Nagasaki Y, Kataoka K (2012) PEGylated nanoparticles for biological and pharmaceutical applications. Adv Drug Deliv Rev 64:246–255CrossRefGoogle Scholar
  37. 37.
    Suk JS, Xu Q, Kim N, Hanes J, Ensign LM (2016) PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev 99:28–51CrossRefPubMedGoogle Scholar
  38. 38.
    Senior J, Delgado C, Fisher D, Tilcock C, Gregoriadis G (1991) Influence of surface hydrophilicity of liposomes on their interaction with plasma protein and clearance from the circulation: studies with poly (ethylene glycol)-coated vesicles. Biochim Biophys Acta Biomembr 1062(1):77–82CrossRefGoogle Scholar
  39. 39.
    Gray JJ (2004) The interaction of proteins with solid surfaces. Curr Opin Struct Biol 14(1):110–115CrossRefPubMedGoogle Scholar
  40. 40.
    Hartvig RA, Van De Weert M, Østergaard J, Jorgensen L, Jensen H (2011) Protein adsorption at charged surfaces: the role of electrostatic interactions and interfacial charge regulation. Langmuir 27(6):2634–2643CrossRefPubMedGoogle Scholar
  41. 41.
    Ståhlberg J, Jönsson B (1996) Influence of charge regulation in electrostatic interaction chromatography of proteins. Anal Chem 68(9):1536–1544CrossRefPubMedGoogle Scholar
  42. 42.
    Rimola A, Corno M, Garza J, Ugliengo P (2012) Ab initio modelling of protein–biomaterial interactions: influence of amino acid polar side chains on adsorption at hydroxyapatite surfaces. Philos Trans A Math Phys Eng Sci 370(1963):1478–1498CrossRefPubMedGoogle Scholar
  43. 43.
    Ozboyaci M, Kokh D, Wade R (2016) Three steps to gold: mechanism of protein adsorption revealed by Brownian and molecular dynamics simulations. Phys Chem Chem Phys 18(15):10191–10200CrossRefPubMedGoogle Scholar
  44. 44.
    Brusatori MA, Van Tassel PR (1999) A kinetic model of protein adsorption/surface-induced transition kinetics evaluated by the scaled particle theory. J Colloid Interface Sci 219(2):333–338CrossRefPubMedGoogle Scholar
  45. 45.
    Chen W-D, Hu H-H, Wang Y-D (2006) Analysis of steric mass-action model for protein adsorption equilibrium onto porous anion-exchange adsorbent. Chem Eng Sci 61(21):7068–7076CrossRefGoogle Scholar
  46. 46.
    Adamczyk Z (2012) Modeling adsorption of colloids and proteins. Curr Opin Colloid Interface 17(3):173–186CrossRefGoogle Scholar
  47. 47.
    Adamczyk Z, Barbasz J, Cieśla M (2010) Kinetics of fibrinogen adsorption on hydrophilic substrates. Langmuir 26(14):11934–11945CrossRefPubMedGoogle Scholar
  48. 48.
    Satulovsky J, Carignano M, Szleifer I (2000) Kinetic and thermodynamic control of protein adsorption. Proc Natl Acad Sci USA 97(16):9037–9041CrossRefPubMedGoogle Scholar
  49. 49.
    Van Tassel PR, Guemouri L, Ramsden JJ, Tarjus G, Viot P, Talbot J (1998) A particle-level model of irreversible protein adsorption with a postadsorption transition. J Colloid Interface Sci 207(2):317–323CrossRefPubMedGoogle Scholar
  50. 50.
    Ravichandran S, Madura JD, Talbot J (2001) A Brownian dynamics study of the initial stages of hen egg-white lysozyme adsorption at a solid interface. J Phys Chem B 105(17):3610–3613CrossRefGoogle Scholar
  51. 51.
    Latour RA, Rini CJ (2002) Theoretical analysis of adsorption thermodynamics for hydrophobic peptide residues on SAM surfaces of varying functionality. J Biomed Mater Res A 60(4):564–577CrossRefGoogle Scholar
  52. 52.
    Zhou J, Chen S, Jiang S (2003) Orientation of adsorbed antibodies on charged surfaces by computer simulation based on a united-residue model. Langmuir 19(8):3472–3478CrossRefGoogle Scholar
  53. 53.
    Arai T, Norde W (1990) The behavior of some model proteins at solid—liquid interfaces 2. Sequential and competitive adsorption. Colloids Surf 51:17–28CrossRefGoogle Scholar
  54. 54.
    Rezwan K, Studart AR, Vörös J, Gauckler LJ (2005) Change of ζ potential of biocompatible colloidal oxide particles upon adsorption of bovine serum albumin and lysozyme. J Phys Chem B 109(30):14469–14474CrossRefPubMedGoogle Scholar
  55. 55.
    Asthagiri D, Lenhoff AM (1997) Influence of structural details in modeling electrostatically driven protein adsorption. Langmuir 13(25):6761–6768CrossRefGoogle Scholar
  56. 56.
    Madliger M, Sander M, Schwarzenbach RP (2010) Adsorption of transgenic insecticidal Cry1Ab protein to SiO2. 2. Patch-controlled electrostatic attraction. Environ Sci Technol 44(23):8877–8883CrossRefPubMedGoogle Scholar
  57. 57.
    Chen S, Liu L, Zhou J, Jiang S (2003) Controlling antibody orientation on charged self-assembled monolayers. Langmuir 19(7):2859–2864CrossRefGoogle Scholar
  58. 58.
    Hamaker H (1937) The London—van der Waals attraction between spherical particles. Physica 4(10):1058–1072CrossRefGoogle Scholar
  59. 59.
    Roth CM, Neal BL, Lenhoff AM (1996) Van der Waals interactions involving proteins. Biophys J 70(2):977–987CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Jeon S, Lee J, Andrade J, De Gennes P (1991) Protein—surface interactions in the presence of polyethylene oxide: I. Simplified theory. J Colloid Interface Sci 142(1):149–158CrossRefGoogle Scholar
  61. 61.
    Haynes C, Tamura K, Korfer H, Blanch H, Prausnitz J (1992) Thermodynamic properties of aqueous. alpha.-chymotrypsin solution from membrane osmometry measurements. J Phys Chem A 96(2):905–912CrossRefGoogle Scholar
  62. 62.
    Naahidi S, Jafari M, Edalat F, Raymond K, Khademhosseini A, Chen P (2013) Biocompatibility of engineered nanoparticles for drug delivery. J Control Release 166(2):182–194CrossRefPubMedGoogle Scholar
  63. 63.
    Hazer B (2010) Amphiphilic Poly(3-hydroxy alkanoate)s: potential candidates for medical applications. Int J Polym Sci. CrossRefGoogle Scholar
  64. 64.
    Blight A (2015) Phase 2 clinical trial of AC105 (Mg/PEG) for treatment of acute spinal cord injury (SCI). Acorda Therapeutics, Inc., HawthorneGoogle Scholar
  65. 65.
    Chandradoss SD, Haagsma AC, Lee YK, Hwang J-H, Nam J-M, Joo C (2014) Surface passivation for single-molecule protein studies. J Vis Exp 86:e50549Google Scholar
  66. 66.
    Green MR (2017) Sambrook J (2017) Preparation of single-stranded bacteriophage M13 DNA by precipitation with polyethylene glycol. Cold Spring Harb Protoc 11:pdb. prot093419CrossRefGoogle Scholar
  67. 67.
    Hekmat D (2015) Large-scale crystallization of proteins for purification and formulation. Bioproc Biosyst Eng 38(7):1209–1231CrossRefGoogle Scholar
  68. 68.
    Moghimi SM, Porter C, Muir I, Illum L, Davis S (1991) Non-phagocytic uptake of intravenously injected microspheres in rat spleen: influence of particle size and hydrophilic coating. Biochem Biophys Res Commun 177(2):861–866CrossRefPubMedGoogle Scholar
  69. 69.
    Pelaz B, del Pino P, Maffre P, Hartmann R, Gallego M, Rivera-Fernandez S, de la Fuente JM, Nienhaus GU, Parak WJ (2015) Surface functionalization of nanoparticles with polyethylene glycol: effects on protein adsorption and cellular uptake. ACS Nano 9(7):6996–7008CrossRefPubMedGoogle Scholar
  70. 70.
    Kumari A, Yadav SK, Yadav SC (2010) Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces 75(1):1–18CrossRefPubMedGoogle Scholar
  71. 71.
    Brigger I, Dubernet C, Couvreur P (2012) Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 64:24–36CrossRefGoogle Scholar
  72. 72.
    Elsabahy M, Wooley KL (2012) Design of polymeric nanoparticles for biomedical delivery applications. Chem Soc Rev 41(7):2545–2561CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Allen T (1994) The use of glycolipids and hydrophilic polymers in avoiding rapid uptake of liposomes by the mononuclear phagocyte system. Adv Drug Deliv Rev 13(3):285–309CrossRefGoogle Scholar
  74. 74.
    Gref R, Domb A, Quellec P, Blunk T, Müller R, Verbavatz J, Langer R (2012) The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres. Adv Drug Deliv Rev 64:316–326CrossRefGoogle Scholar
  75. 75.
    Abuchowski A, Van Es T, Palczuk N, Davis F (1977) Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol. J Biol Chem 252(11):3578–3581PubMedGoogle Scholar
  76. 76.
    Davis S, Abuchowski A, Park Y, Davis F (1981) Alteration of the circulating life and antigenic properties of bovine adenosine deaminase in mice by attachment of polyethylene glycol. Clin Exp Immunol 46(3):649PubMedPubMedCentralGoogle Scholar
  77. 77.
    Klibanov AL, Maruyama K, Torchilin VP, Huang L (1990) Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett 268(1):235–237CrossRefPubMedGoogle Scholar
  78. 78.
    Illum L, Davis S (1984) The organ uptake of intravenously administered colloidal particles can be altered using a non-ionic surfactant (Poloxamer 338). FEBS Lett 167(1):79–82CrossRefPubMedGoogle Scholar
  79. 79.
    Torchilin VP, Trubetskoy VS (1995) Which polymers can make nanoparticulate drug carriers long-circulating? Adv Drug Deliv Rev 16(2–3):141–155CrossRefGoogle Scholar
  80. 80.
    Wang N, Guan Y, Yang L, Jia L, Wei X, Liu H, Guo C (2013) Magnetic nanoparticles (MNPs) covalently coated by PEO–PPO–PEO block copolymer for drug delivery. J Colloid Interface Sci 395:50–57CrossRefPubMedGoogle Scholar
  81. 81.
    Mueller RH, Wallis KH, Troester SD, Kreuter J (1992) In vitro characterization of poly (methyl-methaerylate) nanoparticles and correlation to their in vivo fate. J Control Release 20(3):237–246CrossRefGoogle Scholar
  82. 82.
    Allémann E, Brasseur N, Benrezzak O, Rousseau J, Kudrevich SV, Boyle RW, Leroux JC, Gurny R, Lier JE (1995) PEG-coated poly (lactic acid) nanoparticles for the delivery of hexadecafluoro zinc phthalocyanine to EMT-6 mouse mammary tumours. J Pharm Pharmacol 47(5):382–387CrossRefPubMedGoogle Scholar
  83. 83.
    Shenoy DB, Amiji MM (2005) Poly (ethylene oxide)-modified poly (ɛ-caprolactone) nanoparticles for targeted delivery of tamoxifen in breast cancer. Int J Pharm 293(1):261–270CrossRefPubMedGoogle Scholar
  84. 84.
    Kunii R, Onishi H, Machida Y (2007) Preparation and antitumor characteristics of PLA/(PEG-PPG-PEG) nanoparticles loaded with camptothecin. Eur J Pharm Biopharm 67(1):9–17CrossRefPubMedGoogle Scholar
  85. 85.
    Shubhra QT, Tóth J, Gyenis J, Feczkó T (2014) Surface modification of HSA containing magnetic PLGA nanoparticles by poloxamer to decrease plasma protein adsorption. Colloids Surf B Biointerfaces 122:529–536CrossRefPubMedGoogle Scholar
  86. 86.
    Xiao RZ, Zeng ZW, Zhou GL, Wang JJ, Li FZ, Wang AM (2010) Recent advances in PEG–PLA block copolymer nanoparticles. Int J Nanomedicine 5:1057PubMedPubMedCentralGoogle Scholar
  87. 87.
    Garofalo C, Capuano G, Sottile R, Tallerico R, Adami R, Reverchon E, Carbone E, Izzo L, Pappalardo D (2013) Different insight into amphiphilic PEG-PLA copolymers: influence of macromolecular architecture on the micelle formation and cellular uptake. Biomacromol 15(1):403–415CrossRefGoogle Scholar
  88. 88.
    Romberg B, Oussoren C, Snel CJ, Carstens MG, Hennink WE, Storm G (2007) Pharmacokinetics of poly (hydroxyethyl-l-asparagine)-coated liposomes is superior over that of PEG-coated liposomes at low lipid dose and upon repeated administration. Biochim Biophys Acta Biomembr 1768(3):737–743CrossRefGoogle Scholar
  89. 89.
    Whiteman K, Subr V, Ulbrich K, Torchilin V (2001) Poly (HPMA)-coated liposomes demonstrate prolonged circulation in mice. J Liposome Res 11(2–3):153–164CrossRefPubMedGoogle Scholar
  90. 90.
    Gidwani M, Singh AV (2013) Nanoparticle enabled drug delivery across the blood brain barrier: in vivo and in vitro models, opportunities and challenges. Curr Pharm Biotechnol 14(14):1201–1212CrossRefGoogle Scholar
  91. 91.
    Torchilin VP, Trubetskoy VS, Whiteman KR, Caliceti P, Ferruti P, Veronese FM (1995) New synthetic amphiphilic polymers for steric protection of liposomes in vivo. J Pharm Sci 84(9):1049–1053CrossRefPubMedGoogle Scholar
  92. 92.
    Illum L, Davis S, Müller R, Mak E, West P (1987) The organ distribution and circulation time of intravenously injected colloidal carriers sterically stabilized with a blockcopolymer-poloxamine 908. Life Sci 40(4):367–374CrossRefPubMedGoogle Scholar
  93. 93.
    Tabata Y, Ikada Y (1989) Protein precoating of polylactide microspheres containing a lipophilic immunopotentiator for enhancement of macrophage phagocytosis and activation. Pharm Res 6(4):296–301CrossRefPubMedGoogle Scholar
  94. 94.
    Douglas SJ, Davis SS, Illum L (1986) Biodistribution of poly (butyl 2-cyanoacrylate) nanoparticles in rabbits. Int J Pharm 34(1):145–152CrossRefGoogle Scholar
  95. 95.
    Blume G, Cevc G (1993) Molecular mechanism of the lipid vesicle longevity in vivo. Biochim Biophys Acta Biomembr 1146(2):157–168CrossRefGoogle Scholar
  96. 96.
    Prime KL, Whitesides GM (1993) Adsorption of proteins onto surfaces containing end-attached oligo (ethylene oxide): a model system using self-assembled monolayers. J Am Chem Soc 115(23):10714–10721CrossRefGoogle Scholar
  97. 97.
    Tirrell M, Patel S, Hadziioannou G (1987) Polymeric amphiphiles at solid-fluid interfaces: forces between layers of adsorbed block copolymers. Proc Natl Acad Sci USA 84(14):4725–4728CrossRefGoogle Scholar
  98. 98.
    Taunton HJ, Toprakcioglu C, Klein J (1988) Direct measurement of the interaction between mica surfaces with adsorbed diblock copolymer in a good solvent. Macromolecules 21(11):3333–3336CrossRefGoogle Scholar
  99. 99.
    Gref R, Lück M, Quellec P, Marchand M, Dellacherie E, Harnisch S, Blunk T, Müller R (2000) ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf B Biointerfaces 18(3):301–313CrossRefPubMedGoogle Scholar
  100. 100.
    Kingshott P, Thissen H, Griesser HJ (2002) Effects of cloud-point grafting, chain length, and density of PEG layers on competitive adsorption of ocular proteins. Biomaterials 23(9):2043–2056CrossRefPubMedGoogle Scholar
  101. 101.
    Walker HW, Grant SB (1996) Role of polymer flexibility in the stabilization of colloidal particles by model anionic polyelectrolytes. J Colloid Interface Sci 179(2):552–560CrossRefGoogle Scholar
  102. 102.
    Virden JW, Berg JC (1992) The use of photon correlation spectroscopy for estimating the rate constant for doublet formation in an aggregating colloidal dispersion. J Colloid Interface Sci 149(2):528–535CrossRefGoogle Scholar
  103. 103.
    Stam JV, Wittouck N, De Schryver FC, Almgren M, Miguel M (1995) The role of polymer flexibility on the interaction with surfactant micelles: poly (vinyl alcohol) and sodium dodecyl sulphate aqueous micelle interactions studied by dynamic fluorescence quenching. Can J Chem 73(11):1765–1772CrossRefGoogle Scholar
  104. 104.
    Almgren M, Hansson P, Mukhtar E, Van Stam J (1992) Aggregation of alkyltrimethylammonium surfactants in aqueous poly (styrenesulfonate) solutions. Langmuir 8(10):2405–2412CrossRefGoogle Scholar
  105. 105.
    Thalberg K, Van Stam J, Lindblad C, Almgren M, Lindman B (1991) Time-resolved fluorescence and self-diffusion studies in systems of a cationic surfactant and an anionic polyelectrolyte. J Phys Chem A 95(22):8975–8982CrossRefGoogle Scholar
  106. 106.
    Norde W (1992) Energy and entropy of protein adsorption. J Disper Sci Technol 13(4):363–377CrossRefGoogle Scholar
  107. 107.
    Woodle MC, Lasic DD (1992) Sterically stabilized liposomes. Biochim Biophys Acta Rev Biomembr 1113(2):171–199CrossRefGoogle Scholar
  108. 108.
    Torchilinl V, Papisov M (1994) Why do polyethylene glycol-coated liposomes circulate so long?: molecular mechanism of liposome steric protection with polyethylene glycol: Role of polymer chain flexibility. J Liposome Res 4(1):725–739CrossRefGoogle Scholar
  109. 109.
    Jeon S, Andrade J (1991) Protein—surface interactions in the presence of polyethylene oxide: II. Effect of protein size. J Colloid Interface Sci 142(1):159–166CrossRefGoogle Scholar
  110. 110.
    Wang Y, Li M, Rong J, Nie G, Qiao J, Wang H, Wu D, Su Z, Niu Z, Huang Y (2013) Enhanced orientation of PEO polymer chains induced by nanoclays in electrospun PEO/clay composite nanofibers. Colloid Polym Sci 291(6):1541–1546CrossRefGoogle Scholar
  111. 111.
    Yang S, Liu Z, Liu Y, Jiao Y (2015) Effect of molecular weight on conformational changes of PEO: an infrared spectroscopic analysis. J Mater Sci 50(4):1544–1552CrossRefGoogle Scholar
  112. 112.
    Zhu S, Chen J, Li H, Cao Y (2013) Structure and conformation of poly (ethylene glycol) in confined space of montmorillonite. Appl Surf Sci 264:500–506CrossRefGoogle Scholar
  113. 113.
    De Santis P, Giglio E, Liquori A, Ripamonti A (1963) Stability of helical conformations of simple linear polymers. J Polym Sci A 1(4):1383–1404Google Scholar
  114. 114.
    Schroeder CM, Babcock HP, Shaqfeh ES, Chu S (2003) Observation of polymer conformation hysteresis in extensional flow. Science 301(5639):1515–1519CrossRefPubMedGoogle Scholar
  115. 115.
    Harder P, Grunze M, Dahint R, Whitesides G, Laibinis P (1998) Molecular conformation in oligo (ethylene glycol)-terminated self-assembled monolayers on gold and silver surfaces determines their ability to resist protein adsorption. J Phys Chem B 102(2):426–436CrossRefGoogle Scholar
  116. 116.
    Cevc GG (1992) Drug-carrier and stability properties of the long-lived lipid vesicles. Cryptosomes, in vitro and in vivo. J Liposome Res 2(3):355–368CrossRefGoogle Scholar
  117. 117.
    Needham D, Hristova K, McIntosh T, Dewhirst M, Wu N, Lasic D (1992) Polymer-grafted liposomes: physical basis for the “stealth” property. J Liposome Res 2(3):411–430CrossRefGoogle Scholar
  118. 118.
    Beroström K, Österberg E, Holmberg K, Hoffman AS, Schuman TP, Kozlowski A, Harris JM (1995) Effects of branching and molecular weight of surface-bound poly (ethylene oxide) on protein rejection. J Biomater Sci Polym Ed 6(2):123–132CrossRefGoogle Scholar
  119. 119.
    Mori A, Klibanov AL, Torchilin VP, Huang L (1991) Influence of the steric barrier activity of amphipathic poly (ethyleneglycol) and ganglioside GM1 on the circulation time of liposomes and on the target binding of immunoliposomes in vivo. FEBS Lett 284(2):263–266CrossRefPubMedGoogle Scholar
  120. 120.
    Aramesh M, Shimoni O, Ostrikov K, Prawer S, Cervenka J (2015) Surface charge effects in protein adsorption on nanodiamonds. Nanoscale 7(13):5726–5736CrossRefPubMedGoogle Scholar
  121. 121.
    Modica KJ, Martin TB, Jayaraman A (2017) Effect of polymer architecture on the structure and interactions of polymer grafted particles: theory and simulations. Macromolecules 50(12):4854–4866CrossRefGoogle Scholar
  122. 122.
    Plank J, Yu B (2010) Preparation of hydrocalumite-based nanocomposites using polycarboxylate comb polymers possessing high grafting density as interlayer spacers. Appl Clay Sci 47(3–4):378–383CrossRefGoogle Scholar
  123. 123.
    Lee H, Larson RG (2016) Adsorption of plasma proteins onto PEGylated lipid bilayers: the effect of PEG size and grafting density. Biomacromol 17(5):1757–1765CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Taha Umair Wani
    • 1
  • Syed Naiem Raza
    • 1
  • Nisar Ahmad Khan
    • 1
    Email author
  1. 1.Department of Pharmaceutical SciencesUniversity of KashmirSrinagarIndia

Personalised recommendations