Advertisement

Piezoresistive epoxy resin films with carbon black particles for small-strain sensors

  • Dionatas Hoffmann AndreghettoEmail author
  • Gilberto de Campos FuzariJr.
Original Paper
  • 27 Downloads

Abstract

Materials that change resistance after undergoing deformation have various types of applications as sensors. Among the materials that may be used for this purpose, there are some in which conducting particles are immersed in an isolating polymeric matrix. Carbon black (CB) particles have high electrical conductivity, allowing them to be included in a resin epoxy (EPX) matrix and resulting in an electrical conductor composite; this can be done even in the case of low volumetric fractions of CB. The goal of this work was crafting a conducting polymeric film that has piezoresistive behavior for utilization as strain sensors for low deformations. A relevant aspect of the film development was the search for a solvent to lower the viscosity of the EPX to enhance the homogeneity of the composite. Acetone showed good potential as the solvent for this composite. The sensor showed efficiency under small strain, especially when used with a substrate.

Notes

Acknowledgements

We thank PPGMat from UFMT-CUA, GPol from UNESP-ISA, FAPEMAT, CNPq, and Orion.

References

  1. 1.
    Canavese G, Stassi S, Stralla M, Bignardi C, Pirri CF (2012) Stretchable and conformable metal–polymer piezoresistive hybrid system. Sens Actuators A Phys 186:191–197CrossRefGoogle Scholar
  2. 2.
    Bloor D, Donnelly K, Hands PJ, Laughlin P, Lussey D (2005) A metal–polymer composite with unusual properties. J Phys D Appl Phys 38:2851–2860CrossRefGoogle Scholar
  3. 3.
    Han BG, Han BZ, Ou JP (2009) Experimental study on use of nickel powder-filled Portland cement-based composite for fabrication of piezoresistive sensors with high sensitivity. Sens Actuators A Phys 149:51–55CrossRefGoogle Scholar
  4. 4.
    Han BG, Yu Y, Ha BZ, Ou JP (2008) Development of a wireless stress/strain measurement system integrated with pressure-sensitive nickel powder-filled cement-based sensors. Sens Actuators A Phys 147:536–543CrossRefGoogle Scholar
  5. 5.
    Han BG, Han BZ, Yu X (2010) Effects of the content level and particle size of nickel powder on the piezoresistivity of cement-based composites/sensors. Smart Mater Struct 19:065012CrossRefGoogle Scholar
  6. 6.
    Sandler J, Shaffer MSP, Prasse T, Bauhofer W, Schulte K, Windle AH (1991) Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties. Polymer 40:5967–5971CrossRefGoogle Scholar
  7. 7.
    Ounaies Z, Park C, Wise KE, Siochi EJ, Harrison JS (2003) Electrical properties of single wall carbon nanotube reinforced polyimide composites. Compos Sci Technol 63:1637–1646CrossRefGoogle Scholar
  8. 8.
    Azhari F, Banthia N (2012) Cement-based sensors with carbon fibers and carbon nanotubes for piezoresistive sensing. Cem Concrete Compos 34:866–873CrossRefGoogle Scholar
  9. 9.
    Dang Z, Jiang M, Xie D, Yao S, Zhang L, Bai J (2008) Supersensitive linear piezoresistive property in carbon nanotubes/silicone rubber nanocomposites. J Appl Phys 104:024114CrossRefGoogle Scholar
  10. 10.
    Wang L, Cheng L (2014) Piezoresistive effect of a carbon nanotube silicone-matrix composite. Carbon 71:319–331CrossRefGoogle Scholar
  11. 11.
    Wang L, Xu C, Li Y (2013) Piezoresistive response to changes in contributive tunneling film network of carbon nanotube/silicone rubber composites under multi-load/unload. Sens Actuators A Phys 189:45–54CrossRefGoogle Scholar
  12. 12.
    Zetina-Hernández O, Duarte-Aranda S, May-Pat A, Canché-Escamilla G, Uribe-Calderon J, Gonzalez-Chi PI, Avilés F (2013) Coupled electro-mechanical properties of multiwall carbon nanotube/polypropylene composites for strain sensing applications. J Mater Sci 48(21):7587–7593CrossRefGoogle Scholar
  13. 13.
    Fung CK, Zhang MQ, Chan RH, Li WJ (2005) A PMMA-based micro pressure sensor chip using carbon nanotubes as sensing elements. In: 18th IEEE international conference on micro electro mechanical systems (MEMS 2005), pp 251–254Google Scholar
  14. 14.
    Makireddi S, Shivaprasad S, Kosuri G, Varghese FV, Balasubramaniam K (2005) Electro-elastic and piezoresistive behavior of flexible MWCNT/PMMA nanocomposite films prepared by solvent casting method for structural health monitoring applications. Compos Sci Technol 118:101–107CrossRefGoogle Scholar
  15. 15.
    Wichmann MH, Buschhorn ST, Gehrmann J, Schulte K (2009) Piezoresistive response of epoxy composites with carbon nanoparticles under tensile load. Phys Rev B 80(24):245437CrossRefGoogle Scholar
  16. 16.
    Chung DDL (2000) Cement reinforced with short carbon fibers: a multifunctional material. Compos B 31:511–526CrossRefGoogle Scholar
  17. 17.
    Chung DDL (2000) Cement-matrix composites for smart structures. Smart Mater Struct 9:389–401CrossRefGoogle Scholar
  18. 18.
    Paleo AJ, Van Hattum FWJ, Pereira J, Rocha JG, Silva J, Sencadas V, Lanceros-Méndez S (2010) The piezoresistive effect in polypropylene–carbon nanofibre composites obtained by shear extrusion. Smart Mater Struct 19(6):065013CrossRefGoogle Scholar
  19. 19.
    Wang X, Chung DDL (1998) Short carbon fiber reinforced epoxy coating as a piezoresistive strain sensor for cement mortar. Sens Actuators A Phys 71(3):208–212CrossRefGoogle Scholar
  20. 20.
    Ding T, Wang L, Wang P (2007) Changes in electrical resistance of carbon-black-filled silicone rubber composite during compression. J Polym Sci B Polym Phys 45(19):2700–2706CrossRefGoogle Scholar
  21. 21.
    Wu G, Asai S, Cheng Z, Miura T, Sumita M (2000) A delay of percolation time in carbon-black-filled conductive polymer composites. J Appl Phys 88:1480CrossRefGoogle Scholar
  22. 22.
    Yang QQ, Liang JZ (2008) A percolation model for insulator–metal transition in polymer–conductor composites. Appl Phys Lett 93:131918CrossRefGoogle Scholar
  23. 23.
    Schueler R, Petermann J, Schulte K, Wentzel H (1997) Agglomeration and electrical percolation behavior of carbon black dispersed in epoxy resin. Appl Polym Sci 63:1741–1746CrossRefGoogle Scholar
  24. 24.
    Oh J, Oh K, Kim C, Hong C (2004) Desing of radar absorbing structures using glass/epoxy composites containing carbon black in X-band frequency ranges. Compos B 35:46–56Google Scholar
  25. 25.
    Narkis M, Ram A, Flashner F (1978) Electrical properties of carbon black filled polyethylene. Polym Eng Sci 18:649–653CrossRefGoogle Scholar
  26. 26.
    Calleja FJB, Bayer RK, Ezquerra TA (1988) Electrical conductivity of polyethylene–carbon–fiber composites mixed with carbon black. J Mater Sci 23:1411–1415CrossRefGoogle Scholar
  27. 27.
    Kost J, Narkis M, Foux A (1984) Resistivity behavior of carbon-black-filled silicone rubber in cyclic loading experiments. J Appl Polym Sci 29:3937–3946CrossRefGoogle Scholar
  28. 28.
    Chen L, Chen G, Lu L (2007) Piezoresistive behavior study on finger-sensing silicone rubber/graphite nanosheet nanocomposites. Adv Funct Mater 17:898–904CrossRefGoogle Scholar
  29. 29.
    Soltani R, Katbab AA (2010) The role of interfacial compatibilizer in controlling the electrical conductivity and piezoresistive behavior of the nanocomposites based on RTV silicone rubber/graphite nanosheets. Sens Actuators A Phys 163:213–219CrossRefGoogle Scholar
  30. 30.
    Qu S, Wong SC (2007) Piezoresistive behavior of polymer reinforced by expanded graphite. Compos Sci Technol 67(2):231–237CrossRefGoogle Scholar
  31. 31.
    Sanli A, Benchirouf A, Müller C, Kanoun O (2017) Piezoresistive performance characterization of strain sensitive multi-walled carbon nanotube-epoxy nanocomposites. Sens Actuators A 254:61–68CrossRefGoogle Scholar
  32. 32.
    Etika KC, Liu L, Hess LA, Grunlan JC (2009) The influence of synergistic stabilization of carbon black and clay on the electrical and mechanical properties of epoxy composites. Carbon 47:3128–3136CrossRefGoogle Scholar
  33. 33.
    Kim Y, Cha JY, Ham H, Huh H, So D, Kang I (2011) Preparation of piezoresistive nano smart hybrid material based on graphene. Curr Appl Phys 11:S350–S352CrossRefGoogle Scholar
  34. 34.
    Wang X, Chung DDL (1995) Short-carbon-fiber-reinforced epoxy as a piezoresistive strain sensor. Smart Mater Struct 4(4):363CrossRefGoogle Scholar
  35. 35.
    Wichmann MHG, Buschhorn ST, Boger L, Adelung R, Schulte K (2008) Direction sensitive bending sensors based on multi-wall carbon nanotube/epoxy nanocomposites. Nanotechnology 19:475503CrossRefPubMedGoogle Scholar
  36. 36.
    Moriche R, Jiménez-Suárez A, Prolongo SC, Ureña A (2016) Strain monitoring mechanisms of sensors based on the addition of graphene nanoplatelets into an epoxy matrix. Compos Sci Technol 123:65–70CrossRefGoogle Scholar
  37. 37.
    Lin LY, Lee JH, Hong CE, Yoo GH, Advani SG (2006) Preparation and characterization of layered silicate/glass fiber/epoxy hybrid nanocomposites via vacuum-assisted resin transfer molding (VARTM). Compos Sci Technol 66(13):2116–2125CrossRefGoogle Scholar
  38. 38.
    Montazeri A, Javadpour J, Khavandi A, Tcharkhtchi A, Mohajeri A (2010) Mechanical properties of multi-walled carbon nanotube/epoxy composites. Mater Des 31(9):4202–4208CrossRefGoogle Scholar
  39. 39.
    Brouwer WD, Van Herpt ECFC, Labordus M (2003) Vacuum injection moulding for large structural applications. Compos A Appl Sci Manuf 34(6):551–558CrossRefGoogle Scholar
  40. 40.
    Huang JC (2002) Carbon black filled conducting polymers and polymer blends. Adv Polym Technol 21:299–313CrossRefGoogle Scholar
  41. 41.
    Fu SY, Feng XQ, Lauke B, Mai YW (2008) Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate polymer composites. Compos B Eng 39(6):933–961CrossRefGoogle Scholar
  42. 42.
    Tchoudakov R, Breuer O, Narkis M, Siegmann A (1996) Conductive polymer blends with low carbon black loading: polypropylene/polyamide. Polym Eng Sci 36(10):1336–1346CrossRefGoogle Scholar
  43. 43.
    Zheng S, Deng J, Yang L, Ren D, Huang S, Yang W, Liu UZ, Yang M (2014) Investigation on the piezoresistive behavior of high-density polyethylene/carbon black films in the elastic and plastic regimes. Compos Sci Technol 97:34–40CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Campus Universitário do AraguaiaUniversidade Federal de Mato GrossoBarra do GarçasBrazil

Personalised recommendations