Advertisement

Pervaporation characteristics of PDMS/PMHS nanocomposite membranes inclusive multi-walled carbon nanotubes for improvement of acetic acid–methanol esterification reaction

  • Mohsen Salahchini Javanmardi
  • Elham AmeriEmail author
Original Paper
  • 7 Downloads

Abstract

Cross-linked poly(dimethyl siloxane)–poly(methyl hydrogen siloxane) nanocomposite membranes selective to esters were prepared using different concentrations of multi-walled carbon nanotubes (CNTs) (0, 0.2, 0.5 and 1 wt%) and then used in the hybrid pervaporation reaction process. In this reaction, methyl acetate was produced by pervaporation–esterification reaction in a batch membrane reactor using heterogeneous catalyst of Amberlyst 15. The synthesized membranes were characterized by Fourier transform infrared spectroscopy, scanning electronic microscopy (SEM), X-ray diffraction and thermal gravimetric analysis. The SEM micrographs showed the nanometric distribution of the hybrid membranes. The thermal stability of the prepared membranes showed that the appropriate incorporation of CNT could improve the thermal stability of the prepared membranes. The effects of catalyst loading, CNT content in membranes, temperature and initial molar ratio of reactants were examined. Results showed that the flux and separation factor were varied depending on the studied parameters. Using the hybrid membrane with 0.2 wt% CNT content resulted in an acid conversion rate of 88.7% after 90 min, for an alcohol/acid molar ratio of 4:1 and with catalyst loading of 15 wt% relative to initial weigh of acid in the feed mixture at 50 °C.

Keywords

Carbon nanotubes Esterification Membrane Methyl acetate Poly(dimethyl siloxane) Pervaporation 

Notes

Acknowledgements

The authors are thankful to Dr. M. Alizade (Islamic Azad University, Shahreza Branch, IRAN) for encouraging them to carry out the work.

References

  1. 1.
    Noll W (1993) Chemistry and technology of silicones. Aca Pre, New York, pp 197–198Google Scholar
  2. 2.
    Blume I, Wijmans J, Baker R (1990) The separation of dissolved organics from water by pervaporation. J Membr Sci 49:253–286CrossRefGoogle Scholar
  3. 3.
    Jia M-D, Pleinemann K-V, Behling R-D (1992) Preparation and characterization of thin-film zeolite–PDMS composite membranes. J Membr Sci 73:119–128CrossRefGoogle Scholar
  4. 4.
    Yeom C, Kim H, Rhim J (1999) Removal of trace vocs from water through PDMS membranes and analysis of their permeation behaviors. J Appl Poly Sci 73:601–611CrossRefGoogle Scholar
  5. 5.
    Mishima S, Nakagawa T (1999) Plasma-grafting of fluoroalkyl methacrylate onto PDMS membranes and their voc separation properties for pervaporation. J Appl Poly Sci 73:1835–1844CrossRefGoogle Scholar
  6. 6.
    Bueso L, Osorio-Galindo M, Alcaina-Miranda I, Ribes-Greus A (2000) Swelling behavior of pervaporation membranes in ethanol–water mixtures. J Appl Poly Sci 75:1424–1433CrossRefGoogle Scholar
  7. 7.
    Panek D, Konieczny K (2007) Preparation and applying the membranes with carbon black to pervaporation of toluene from the diluted aqueous solutions. Sep Purif Technol 57:507–512CrossRefGoogle Scholar
  8. 8.
    Osorio-Galindo M, Iborra-Clar A, Alcaina-Miranda I, Ribes-Greus A (2001) Characterization of poly dimethylsiloxane-poly methyl hydrogen siloxane composite membranes for organic water pervaporation separation. J Appl Poly Sci 81:546–556CrossRefGoogle Scholar
  9. 9.
    Yang D, Yang S, Jiang Z, Yu S, Zhang J, Pan F, Cao X, Wang B, Yang J (2015) Polydimethylsiloxane–graphenenanosheets hybrid membranes with enhanced pervaporative desulfurization performance. J MembrSci 487:152–161Google Scholar
  10. 10.
    Tanaka S, ChaoY Araki S, Miyake Y (2010) Pervaporation characteristics of pore-filling PDMS/PMHS membranes for recovery of ethylacetate from aqueous solution. J Membr Sci 348:383–388CrossRefGoogle Scholar
  11. 11.
    LiuY-L SuY-H, Lai J-Y (2004) In situ crosslinking of chitosan and formation of chitosan–silica hybrid membranes with using γ-glycidoxypropyltrimethoxysilane as a crosslinking agent. Polymer 45:6831–6837CrossRefGoogle Scholar
  12. 12.
    Yamaguchi T, Nakao S, Kimura S (1991) Plasma-graft filling polymerization: preparation of a new type of pervaporation membrane for organic liquid mixtures. Macromolecules 24:5522–5527CrossRefGoogle Scholar
  13. 13.
    Yamaguchi T, Yamahara S, Nakao S-i, Kimura S (1994) Preparation of pervaporation membranes for removal of dissolved organics from water by plasma-graft filling polymerization. J Membr Sci 95:39–49CrossRefGoogle Scholar
  14. 14.
    Netke S, Sawant S, Joshi J, Pangarkar V (1995) Sorption and permeation of acetic acid through zeolite filled membrane. J Membr Sci 107:23–33CrossRefGoogle Scholar
  15. 15.
    Wenchang J, Sikdar SK, Hwang S-T (1995) Sorption, diffusion and permeation of 1, 1, 1-trichloroethane through adsorbent-filled polymeric membranes. J Membr Sci 103:243–255CrossRefGoogle Scholar
  16. 16.
    Torabi B, Ameri E (2016) Methyl acetate production by coupled esterification-reaction process using synthesized cross-linked PVA/silica nanocomposite membranes. Chem Eng J 288:461–472CrossRefGoogle Scholar
  17. 17.
    Shameli A, Ameri E (2017) Synthesis of cross-linked PVA membranes embedded with multi-wall carbon nanotubes and their application to esterification of acetic acid with methanol. Chem Eng J 309:381–396CrossRefGoogle Scholar
  18. 18.
    Tamiji T, Ameri E (2017) Preparation, characterization, and gas permeation properties of blend membranes of polysulfone and polyethylene glycol inclusive alumina nanoparticles. Int J Environ Sci Technol 14:1235–1242CrossRefGoogle Scholar
  19. 19.
    Aminabhavi TM, Patil MB, Bhat SD, Halgeri AB, Vijayalakshmi RP, Kumar P (2009) Activated charcoal loaded composite membranes of sodium alginate in pervaporation separation of water-organic azeotropes. J Appl Polym Sci 113:966–975CrossRefGoogle Scholar
  20. 20.
    Adoor SG, Rajineekanth V, Nadagouda MN, Ch Rao K, Dionysiou DD, Aminabhavi TM (2013) Exploration of nanocomposite membranes composed of phosphotungstic acid in sodium alginate for separation of aqueous–organic mixtures by pervaporation. Sep Purif Technol 113:64–74CrossRefGoogle Scholar
  21. 21.
    Suhas DP, Raghu AV, Jeongb HM, Aminabhavia TM (2013) Graphene-loaded sodium alginate nanocomposite membranes with enhanced isopropanol dehydration performance via pervaporation technique. RSC Adv 3:17120–17130CrossRefGoogle Scholar
  22. 22.
    Dharupaneedi SP, Anjanapura RV, Han JM, Aminabhavi TM (2014) Functionalized graphene sheets embedded in chitosan nanocomposite membranes for ethanol and isopropanol dehydration via pervaporation. Ind Eng Chem Res 53:14474–14484CrossRefGoogle Scholar
  23. 23.
    Suhas DP, Aminabhavi TM, Jeong HM, Raghu AV (2015) Hydrogen peroxide treated graphene as an effective nanosheet filler for separation application. RSC Adv 5:100984–100995CrossRefGoogle Scholar
  24. 24.
    Suhas DP, Aminabhavi TM, Raghu AV (2014) Tunable mixed matrix membranes of poly(vinyl alcohol) loaded with H-ZSM5 particles for pervaporation dehydration of alcohols: influence of silica/alumina ratio. Polym Eng Sci 54:1774–1782CrossRefGoogle Scholar
  25. 25.
    Zhuang X, Chen X, Su Y, Cao W, Wan Y (2015) Improved performance of PDMS/silicalite-1 pervaporation membranes via designing new silicalite-1 particles. J MembrSci 493:37–45Google Scholar
  26. 26.
    Sun D, Li B-B, Xu Z-L (2013) Pervaporation of ethanol/water mixture by organophilicnano-silica filled PDMS composite membranes. Desalination 322:159–166CrossRefGoogle Scholar
  27. 27.
    Cao R, Zhang X, Wu H, Wang J, Liu X, Jiang Z (2011) Enhanced pervaporative desulfurization by polydimethylsiloxane membranes embedded with silver/silica core–shell microspheres. J Haz Mater 187:324–332CrossRefGoogle Scholar
  28. 28.
    Huang Z, Guo Z, Calka A, Wexler D, Liu H-K (2007) Effects of carbon black, graphite and carbon nanotube additives on hydrogen storage properties of magnesium. J Alloy Compd 427:94–100CrossRefGoogle Scholar
  29. 29.
    Kim S, Pechar TW, Marand E (2006) Poly imide siloxane and carbon nanotube mixed matrix membranes for gas separation. Desalination 192:330–339CrossRefGoogle Scholar
  30. 30.
    Lou J, Ilias S (2010) Development of nanofiller-modulated polymeric oxygen enrichment membranes for reduction of nitrogen oxides in coal combustion. North Carolina Agricultural & Technical State University, 2010Google Scholar
  31. 31.
    Medalia A (1978) Effect of carbon black on dynamic properties of rubber vulcanizates. Rubber Chem Technol 51:437–523CrossRefGoogle Scholar
  32. 32.
    Vankelecom IF, De Kinderen J, Dewitte BM, Uytterhoeven JB (1997) incorporation of hydrophobic porous fillers in PDMS membranes for use in pervaporation. J Phys Chem 101:5182–5185CrossRefGoogle Scholar
  33. 33.
    Hosseini M, Ameri E (2017) Pervaporation characteristics of a PDMS/PMHS membrane for removal of dimethyl sulfoxide from aqueous solutions. Vacuum 141:288–295CrossRefGoogle Scholar
  34. 34.
    ParkJ U, ChoS ChoK S, AhnK H, LeeS J, LeeS J (2005) Effective in-situ preparation and characteristics of polystyrene-grafted carbon nanotube composites. KorAustRhe J17:41–45Google Scholar
  35. 35.
    Nour M, Berean K, Griffin MJ, Matthews GI, Bhaskaran M, Sriram S, Kalantar-Zadeh K (2012) Nanocomposite carbon-PDMS membranes for gas separation. Sen Act B Chem 161:982–988CrossRefGoogle Scholar
  36. 36.
    Maji D, Lahiri S, Das S (2012) Study of hydrophilicity and stability of chemically modified PDMS surface using piranha and KOH solution. Surf Inte Anal 44:62–69CrossRefGoogle Scholar
  37. 37.
    Crews P, Rodriquez J, Jaspars M, Crews RJ (1998) Organic structure analysis. Oxford University Press, New YorkGoogle Scholar
  38. 38.
    Adoor SG, Manjeshwar LS, Bhat SD, Aminabhavi TM (2008) Aluminum-rich zeolite beta incorporated sodium alginate mixed matrix membranes for pervaporation dehydration and esterification of ethanol and acetic acid. J Membr Sci 318:233–246CrossRefGoogle Scholar
  39. 39.
    Bhat SD, Aminabhavi TM (2009) Pervaporation-aided dehydration and esterification of acetic acid with ethanol using 4A zeolite filled crosslinked sodium alginate mixed matrix membranes. J Appl Polym Sci 113:157–168CrossRefGoogle Scholar
  40. 40.
    HuangY Zhang P, Fu J, Zhou Y, Huang X, Tang X (2009) Pervaporation of ethanol aqueous solution by polydimethylsiloxane/polyphosphazene nanotube nanocomposite membranes. J Membr Sci 339:85–92CrossRefGoogle Scholar
  41. 41.
    Zhou HL, Su Y, Chen XR, Yi SL, Wan YH (2010) Modification of silicalite-1 by vinyltrimethoxysilane VTMS and preparation of silicalite-1 filled polydimethylsiloxane PDMS hybrid pervaporation membranes. Sep Purif Technol 75:286–294CrossRefGoogle Scholar
  42. 42.
    NagaseY Ando T, Yun CM (2007) Syntheses of siloxane-grafted aromatic polymers and the application to pervaporation membrane. React Funct Polym 67:1252–1263CrossRefGoogle Scholar
  43. 43.
    Magalad VT, Gokavi GS, Nadagouda MN, Aminabhavi TM (2011) Pervaporation separation of water-ethanol mixtures using organic-inorganic nanocomposite membranes. J Phys Chem (C) 115:14731–14744CrossRefGoogle Scholar
  44. 44.
    Magalad VT, Gokavi GS, Ranganathaiah C, Burshe MH, Han Ch, Dionysiou DD, Nadagouda MN, Aminabhavi TM (2012) Polymeric blend nanocomposite membranes for ethanol dehydration—effect of morphology and membrane–solvent interactions. J Membr Sci 430:321–329CrossRefGoogle Scholar
  45. 45.
    Aminabhavi TM, Patil MB (2010) Poly(vinyl alcohol) loaded with polyaniline-coated TiO2 and TiO2 nanoparticles for the pervaporation dehydration of aqueous mixtures of 1,4-dioxane and tetrahydrofuran. Design Monom Polym 13:497–508CrossRefGoogle Scholar
  46. 46.
    Wu P, Brisdon BJ, England R, Field RW (2002) Preparation of modified difunctional PDMS membranes and a comparative evaluation of their performance for the pervaporative recovery of p-cresol from aqueous solution. J Membr Sci 206:265–275CrossRefGoogle Scholar
  47. 47.
    Mohammadi T, Aroujalian A, Bakhshi A (2005) Pervaporation of dilute alcoholic mixtures using PDMS membrane. Chem Eng Sci 60:1875–1880CrossRefGoogle Scholar
  48. 48.
    Ameri E, Moheb A, Roodpeyma S (2011) Incorporation of vapor permeation process to esterification reaction of propionic acid and isopropanol for performance improvement. Korean J Chem Eng 28:1593–1598CrossRefGoogle Scholar
  49. 49.
    Ameri E, Moheb A, Roodpeyma S (2010) Vapor-permeation-aided esterification of isopropanol/propionic acid using NaA and PERVAP® 2201 membranes. Chem Eng J 162:355–363CrossRefGoogle Scholar
  50. 50.
    Sajjan AM, Kumar BKJ, Kittur AA, Kariduraganavar MY (2013) Development of novel grafted hybrid PVA membranes using glycidyltrimethyl ammonium chloride for pervaporation separation of water–isopropanol mixtures. J Ind Eng Chem 19:427–437CrossRefGoogle Scholar
  51. 51.
    Magalad VT, Supale AR, Maradur SP, Gokavi GS, Aminabhavi TM (2010) Preyssler type heteropolyacid-incorporated highly water-selective sodium alginate-based inorganic-organic hybrid membranes for pervaporation dehydration of ethanol. Chem Eng J 159:75–83CrossRefGoogle Scholar
  52. 52.
    Magalada VT, Gokavi GS, Rajub KVSN, Aminabhavi TM (2010) Mixed matrix blend membranes of poly(vinyl alcohol)-poly(vinyl pyrrolidone) loaded with phosphomolybdic acid used in pervaporation dehydration of ethanol. J Membr Sci 354:150–161CrossRefGoogle Scholar
  53. 53.
    Mali MG, Magalad VT, Gokavi GS, Aminabhavi MT, Raju KVSN (2011) Separation of isopropanol-water mixtures by pervaporation using mixed matrix blend membranes of poly(vinyl alcohol)/poly(vinyl pyrrolidone) loaded with phosphomolybdic acid. J Appl Polym Sci 121:711–719CrossRefGoogle Scholar
  54. 54.
    Adoor SG, Manjeshwar LS, Aminabhavi TM (2008) Blend membranes of sodium alginate/poly(styrene sulfonic acid) for isopropanol dehydration. Design Monom Polym 11:147–157CrossRefGoogle Scholar
  55. 55.
    Teli ShB, Gokavi GS, Tak TM, Aminabhavi TM (2009) Chitosan/gelatin blend membranes for pervaporation dehydration of 1,4-dioxane. Sep Sci Technol 44:3202–3223CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemical EngineeringSouth Tehran Branch, Islamic Azad UniversityTehranIran
  2. 2.Department of Chemical EngineeringShahreza Branch, Islamic Azad UniversityShahrezaIran

Personalised recommendations