Advertisement

Effect of morphology alteration on mechanical properties and fracture toughness of polypropylene/polyamide 6/ethylene polypropylene diene monomer graft maleic anhydride (PP/PA6/EPDM-g-MA) reactive ternary blends

  • M. HasanpourEmail author
  • M. K. Razavi Aghjeh
  • M. Mehrabi Mazidi
  • B. Afsari
Original Paper
  • 9 Downloads

Abstract

Morphology, mechanical properties and fracture behavior of polypropylene/polyamide 6/ethylene polypropylene diene monomer graft maleic anhydride (PP/PA6/EPDM-g-MA) ternary blends containing various amounts of the EPDM-g-MA rubbery phase (from 0 to 9 wt%), with special attention to the structure–property relationships through the core–shell morphology development, were studied. The fracture surface, deformation micro-mechanisms and mechanical properties of the blends were examined using field emission scanning electron microscopy technique, tensile and impact tests, respectively. The fracture properties were characterized in detail by the linear elastic fracture mechanics method. The fracture energy (GC), fracture toughness (KIC) and impact strength were improved monotonically up to some EPDM-g-MA content, above which the characteristics were appreciably enhanced. These results were attributed to an alteration of this morphology from dispersion of PA6/EPDM-g-MA core–shell particles at low EPDM-g-MA contents to the aggregated structure of core–shell particles at higher EPDM-g-MA contents. The micro-void formation via activation of internal cavitation or debonding of the rubbery phase was found to be responsible for the stress whitening phenomenon that occurred during the impact fracture process and, hence, increased impact toughness.

Graphic abstract

Keywords

Structure–property relationships Core–shell morphology Microstructure Fracture toughness Deformation 

Notes

References

  1. 1.
    Utracki LA, Wilkie CA (eds) (2002) Polymer blends handbook, vol 1. Kluwer academic publishers, DordrechtGoogle Scholar
  2. 2.
    Paul DR (2012) Polymer blends, vol 1. Elsevier, AmsterdamGoogle Scholar
  3. 3.
    Olabisi O, Robeson LM, Shaw MT (1979) Polymer-polymer miscibility. Academic Press, New YorkGoogle Scholar
  4. 4.
    Walsh DJ, Higgins JS, Maconnachie A (eds) (2012) Polymer blends and mixtures, vol 89. Springer, BerlinGoogle Scholar
  5. 5.
    Wilkinson AN et al (1999) Phase structure in polypropylene/PA6/SEBS blends. Polymer 40(17):4971–4975CrossRefGoogle Scholar
  6. 6.
    Ou Y et al (2004) Maleic anhydride grafted thermoplastic elastomer as an interfacial modifier for polypropylene/polyamide 6 blends. J Appl Polym Sci 91(3):1806–1815CrossRefGoogle Scholar
  7. 7.
    Mazidi MM, Aghjeh MKR (2015) Synergistic toughening effects of dispersed components in PP/PA6/EPDM ternary blends; quantitative analysis of the fracture toughness via the essential work of fracture (EWF) methodology. RSC Adv 5(58):47183–47198CrossRefGoogle Scholar
  8. 8.
    Yin B et al (2013) Largely improved impact toughness of PA6/EPDM-g-MA/HDPE ternary blends: the role of core–shell particles formed in melt processing on preventing micro-crack propagation. Polymer 54(7):1938–1947CrossRefGoogle Scholar
  9. 9.
    Shangguan Y et al (2017) A new approach to fabricate polypropylene alloy with excellent low-temperature toughness and balanced toughness-rigidity through unmatched thermal expansion coefficients between components. Polymer 112:318–324CrossRefGoogle Scholar
  10. 10.
    Chen F et al (2015) Toughening with little rigidity loss and mechanism for modified polypropylene by polymer particles with core–shell structure. Polymer 65:81–92CrossRefGoogle Scholar
  11. 11.
    Virgilio N et al (2009) In situ measure of interfacial tensions in ternary and quaternary immiscible polymer blends demonstrating partial wetting. Macromolecules 42(19):7518–7529CrossRefGoogle Scholar
  12. 12.
    Dasari A, Yu ZZ, Mai Y-W (2007) Transcrystalline regions in the vicinity of nanofillers in polyamide-6. Macromolecules 40(1):123–130CrossRefGoogle Scholar
  13. 13.
    Bhattacharyya AR et al (2005) Reactively compatibilised polyamide6/ethylene-co-vinyl acetate blends: mechanical properties and morphology. Polymer 46(5):1661–1674CrossRefGoogle Scholar
  14. 14.
    Liang H et al (1999) Correlation between the interfacial tension and dispersed phase morphology in interfacially modified blends of LLDPE and PVC. Macromolecules 32(5):1637–1642CrossRefGoogle Scholar
  15. 15.
    Valera TS, Morita AT, Demarquette NR (2006) Study of morphologies of PMMA/PP/PS ternary blends. Macromolecules 39(7):2663–2675CrossRefGoogle Scholar
  16. 16.
    Le Corroller P, Favis BD (2011) Effect of viscosity in ternary polymer blends displaying partial wetting phenomena. Polymer 52(17):3827–3834CrossRefGoogle Scholar
  17. 17.
    Ravati S, Favis BD (2010) Morphological states for a ternary polymer blend demonstrating complete wetting. Polymer 51(20):4547–4561CrossRefGoogle Scholar
  18. 18.
    Wang D et al (2011) Compatibilization and morphology development of immiscible ternary polymer blends. Polymer 52(1):191–200CrossRefGoogle Scholar
  19. 19.
    Abolhasani MM, Arefazar A, Mozdianfard M (2010) Effect of dispersed phase composition on morphological and mechanical properties of PET/EVA/PP ternary blends. J Polym Sci Part B Polym Phys 48(3):251–259CrossRefGoogle Scholar
  20. 20.
    Li LP, Yin B, Yang MB (2011) Morphology prediction and the effect of core-shell structure on the rheological behavior of PP/EPDM/HDPE ternary blends. Polym Eng Sci 51(12):2425–2433CrossRefGoogle Scholar
  21. 21.
    Li L et al (2012) Characterization of PA6/EPDM-g-MA/HDPE ternary blends: the role of core-shell structure. Polymer 53(14):3043–3051CrossRefGoogle Scholar
  22. 22.
    Dou R et al (2013) Effect of core-shell morphology evolution on the rheology, crystallization, and mechanical properties of PA6/EPDM-g-MA/HDPE ternary blend. J Appl Polym Sci 129(1):253–262CrossRefGoogle Scholar
  23. 23.
    Mazidi MM, Aghjeh MKR, Hasanpour M (2018) Fracture resistance and micromechanical deformations in PP/PA6/EPDM ternary blends: effect of rubber functionality, dispersion state and loading conditions. Eng Fract Mech 191(2018):65–81CrossRefGoogle Scholar
  24. 24.
    Dou R et al (2015) Toughening of PA6/EPDM-g-MAH/HDPE ternary blends via controlling EPDM-g-MAH grafting degree: the role of core–shell particle size and shell thickness. Polym Bull 72(2):177–193CrossRefGoogle Scholar
  25. 25.
    Zhou Y et al (2013) Effect of EPDM-g-MAH on the morphology and properties of PA6/EPDM/HDPE ternary blends. Polym Eng Sci 53(9):1845–1855CrossRefGoogle Scholar
  26. 26.
    Zhang Z et al (2014) Inducing a network structure of rubber phase: an effective approach to toughen polymer without sacrificing stiffness. RSC Adv 4(105):60617–60625CrossRefGoogle Scholar
  27. 27.
    Majumdar B, Keskkula H, Paul DR (1994) Morphology development in toughened aliphatic polyamides. Polymer 35(7):1386–1398CrossRefGoogle Scholar
  28. 28.
    Wang W et al (2009) Rheological characterization and morphology of nylon 1212/functional elastomer blends. J Appl Polym Sci 112(2):953–962CrossRefGoogle Scholar
  29. 29.
    Mazidi MM et al (2016) Structure–property relationships in super-toughened polypropylene-based ternary blends of core–shell morphology. RSC Adv 6(2):1508–1526CrossRefGoogle Scholar
  30. 30.
    Chen F et al (2015) Balanced toughening and strengthening of ethylene–propylene rubber toughened isotactic polypropylene using a poly (styrene-b-ethylene–propylene) diblock copolymer. RSC Adv 5(27):20831–20837CrossRefGoogle Scholar
  31. 31.
    Rösch J, Mülhaupt R (1994) The role of core/shell-microparticle dispersions in polypropylene/polyamide-6 blends. Polym Bull 32(5-6):697–704CrossRefGoogle Scholar
  32. 32.
    Kim G-M et al (1998) Micromechanical deformation processes in toughened PP/PA/SEBS-g-MA blends prepared by reactive processing. Acta Polym 49(2-3):88–95CrossRefGoogle Scholar
  33. 33.
    Tucker JD, Sunggyu L, Einsporn RL (2000) A study of the effect of PP-g-MA and SEBS-g-MA on the mechanical and morphological properties of polypropylene/nylon 6 blends. Polym Eng Sci 40(12):2577–2589CrossRefGoogle Scholar
  34. 34.
    Roeder J et al (2002) Polypropylene/polyamide-6 blends: influence of compatibilizing agent on interface domains. Polym Test 21(7):815–821CrossRefGoogle Scholar
  35. 35.
    Zeng N et al (2002) Study on the microstructures and mechanical behaviour of compatibilized polypropylene/polyamide-6 blends. Polym Int 51(12):1439–1447CrossRefGoogle Scholar
  36. 36.
    Wilkinson AN, Clemens ML, Harding VM (2004) The effects of SEBS-g-maleic anhydride reaction on the morphology and properties of polypropylene/PA6/SEBS ternary blends. Polymer 45(15):5239–5249CrossRefGoogle Scholar
  37. 37.
    Bai S-L et al (2005) Polypropylene/polyamide 6/polyethylene-octene elastomer blends. Part 3. Mechanisms of volume dilatation during plastic deformation under uniaxial tension. Polymer 46(17):6437–6446CrossRefGoogle Scholar
  38. 38.
    Bai S-L et al (2004) Microstructures and mechanical properties of polypropylene/polyamide 6/polyethelene-octene elastomer blends. Polymer 45(9):3063–3071CrossRefGoogle Scholar
  39. 39.
    Shashidhara GM et al (2009) Effect of PP-g-MAH compatibilizer content in polypropylene/nylon-6 blends. Polym Bull 63(1):147–157CrossRefGoogle Scholar
  40. 40.
    Aranburu N, Eguiazabal JI (2013) Compatible blends of polypropylene with an amorphous polyamide. J Appl Polym Sci 127(6):5007–5013CrossRefGoogle Scholar
  41. 41.
    Shokoohi S, Arefazar A, Naderi G (2011) Compatibilized Polypropylene/Ethylene–Propylene–Diene-Monomer/Polyamide6 ternary blends: effect of twin screw extruder processing parameters. Mater Des 32(3):1697–1703CrossRefGoogle Scholar
  42. 42.
    Shokoohi S, Arefazar A, Naderi G (2012) Compatibilized PP/EPDM/PA6 ternary blends: extended morphological studies. Polym Adv Technol 23(3):418–424CrossRefGoogle Scholar
  43. 43.
    Rösch J, Mülhaupt R (1993) Comparison of maleic anhydride-grafted poly (propylene) with maleic anhydride-grafted polystyrene-block-poly (ethene-co-but-1-ene)-block-polystyrene as blend compatibilizers of poly (propylene)/polyamide-6 blends. Die Makromol Chem Rapid Commun 14(8):503–509CrossRefGoogle Scholar
  44. 44.
    Rösch J (1995) Modeling the mechanical properties in polypropylene/polyamide-6 blends with core shell morphology. Polym Eng Sci 35(24):1917–1922CrossRefGoogle Scholar
  45. 45.
    Rösch J, Mülhaupt R (1995) Mechanical and morphological properties of elastomer-modified polypropylene/polyamide-6 blends. J Appl Polym Sci 56(12):1599–1605CrossRefGoogle Scholar
  46. 46.
    Kim G-M, Michler GH (1998) Micromechanical deformation processes in toughened and particle filled semicrystalline polymers: part 2. Model representation for micromechanical deformation processes. Polymer 39(23):5699–5703CrossRefGoogle Scholar
  47. 47.
    Ohlsson B, Hassander H, Törnell B (1998) Effect of the mixing procedure on the morphology and properties of compatibilized polypropylene/polyamide blends. Polymer 39(20):4715–4721CrossRefGoogle Scholar
  48. 48.
    Liu H et al (2006) Toughening and compatibilization of polypropylene/polyamide-6 blends with a maleated–grafted ethylene-co-vinyl acetate. J Appl Polym Sci 99(6):3300–3307CrossRefGoogle Scholar
  49. 49.
    Roeder J et al (2002) Polypropylene/polyamide-6 blends: influence of compatibilizing agent on interface domains. Polym Test 21(7):815–821CrossRefGoogle Scholar
  50. 50.
    Kristofic M, Ujhelyiová A (2012) Compatibilisation of PP/PA blends. Fibres Text East Eur 4(93):30–36Google Scholar
  51. 51.
    Guo HF et al (1997) Prediction and manipulation of the phase morphologies of multiphase polymer blends: 1. Ternary systems. Polymer 38(4):785–794CrossRefGoogle Scholar
  52. 52.
    Hobbs SY, Dekkers MEJ, Watkins VH (1988) Effect of interfacial forces on polymer blend morphologies. Polymer 29(9):1598–1602CrossRefGoogle Scholar
  53. 53.
    Reignier J, Favis BD (2000) Control of the subinclusion microstructure in HDPE/PS/PMMA ternary blends. Macromolecules 33(19):6998–7008CrossRefGoogle Scholar
  54. 54.
    Luzinov I et al (1999) Composition effect on the core–shell morphology and mechanical properties of ternary polystyrene/styrene–butadiene rubber/polyethylene blends. Polymer 40(10):2511–2520CrossRefGoogle Scholar
  55. 55.
    Wu S (1982) Polymer interface and adhesion. Marcel Dekker, WilmingtonGoogle Scholar
  56. 56.
    Fleischer CA, Morales AR, Koberstein JT (1994) Interfacial modification through end group complexation in polymer blends. Macromolecules 27(2):379–385CrossRefGoogle Scholar
  57. 57.
    Kinloch AJ (ed) (2013) Fracture behaviour of polymers. SpringerGoogle Scholar
  58. 58.
    Bucknall CB (1977) Toughened plastics. Applied Science Publishers, LondonCrossRefGoogle Scholar
  59. 59.
    Kinloch AJ, Young RJ (1983) Fracture behaviour of polymers. SpringerGoogle Scholar
  60. 60.
    Walker I, Collyer AA (1994) Rubber toughening mechanisms in polymeric materials. In: Rubber toughened engineering plastics. Springer, Dordrecht, pp 29–56Google Scholar
  61. 61.
    Grein C, Kausch HH, Béguelin P (2003) Characterisation of toughened polymers by LEFM using an experimental determination of the plastic zone correction. Polym Test 22(7):733–746CrossRefGoogle Scholar
  62. 62.
    Mazidi MM, Razavi Aghjeh MK, Abbasi F (2013) Unstable fracture behavior of rubber toughened poly (styrene-co-acrylonitrile). J Macromol Sci Part B 52(8):1158–1182CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • M. Hasanpour
    • 1
    • 2
    Email author
  • M. K. Razavi Aghjeh
    • 1
    • 2
  • M. Mehrabi Mazidi
    • 1
    • 2
  • B. Afsari
    • 1
    • 2
  1. 1.Institute of Polymeric MaterialsSahand University of TechnologySahand New Town, TabrizIran
  2. 2.Faculty of Polymer EngineeringSahand University of TechnologySahand New Town, TabrizIran

Personalised recommendations