Advertisement

Preparation and characterization of κ-carrageenan hydrogel for controlled release of copper and manganese micronutrients

  • Gulen Oytun AkalinEmail author
  • Mehlika Pulat
Original Paper
  • 10 Downloads

Abstract

A series of κ-carrageenan (κ-CG) hydrogels were prepared by using glutaraldehyde (GA) as crosslinker for controlled releasing of copper and manganese micronutrients. The hydrogels were characterized by gel content, swelling and degradation tests, Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR) and Scanning Electron Microscope (SEM) observations. The variations of swelling percentages (S%) with time, temperature and pH were determined for all hydrogels. As the amounts of crosslinker increased, S% decreased regularly in contrast to gel content results. The higher swelling values were obtained in basic medium than acidic and neutral mediums for all κ-CG hydrogels. Releasing of copper and manganese micronutrients from κ-CG hydrogels was investigated in water and soil. A simulated releasing model was also applied to estimate the releasing behaviors in agricultural irrigations. In all release studies, the cumulative release values increased with decreasing GA amounts. The release kinetic parameters were also calculated. It was detected that the releasing of micronutrients in soil was slower than that in water.

Notes

Acknowledgements

This work was financially supported by the Scientific Research Projects Coordination Unit of Gazi University (Grant No. 05/2015-08).

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Shaviv A (2001) Advances in controlled-release fertilizers. Adv Agron 71:1–49CrossRefGoogle Scholar
  2. 2.
    Manivasagaperumal R, Vijayarengan P, Balamurugan S, Thiyagarajan G (2011) Effect of copper on growth, dry matter yield and nutrient content of Vigna Radiata (L.) Wilczek. J Phytol 3(3):53–62Google Scholar
  3. 3.
    Ducic T, Polle A (2005) Transport and detoxification of manganese and copper in plants. Braz J Plant Physiol 17(1):103–112CrossRefGoogle Scholar
  4. 4.
    Barker AV, Pilbeam DJ (2007) Handbook of plant nutrition. CRC Press Taylor & Francis Group, Boca Raton, pp 411–430Google Scholar
  5. 5.
    Bolatı I, Kara O (2017) Plant Nutrients: sources, functions, deficiencies and redundancy. J Bartin Fac For 19(1):218–228Google Scholar
  6. 6.
    Mahler RL (2004) Nutrients plants require for growth. University of Idaho Extension Idaho Agricultural Experiment Station, Moscow, pp 1–4Google Scholar
  7. 7.
    Millaleo R, Reyes-Diaz M, Ivanov AG, Mora ML, Alberdi M (2010) Manganese as essential and toxic element for plants: transport, accumulation and resistance mechanisms. J Soil Sci Plant Nutr 10(4):470–481CrossRefGoogle Scholar
  8. 8.
    Azeem B, KuShaari K, Man ZB, Basit A, Thanh TH (2014) Review on materials & methods to produce controlled release coated urea fertilizer. J Control Release 181:11–21CrossRefGoogle Scholar
  9. 9.
    Xie L, Liu M, Ni B, Wang Y (2012) Utilization of wheat straw for the preparation of coated controlled-release fertilizer with the function of water retention. J Agric Food Chem 60(28):6921–6928CrossRefGoogle Scholar
  10. 10.
    Ji Y, Liu G, Ma J, Xu H, Yagi K (2012) Effect of controlled-release fertilizer on nitrous oxide emission from a winter wheat field. Nutr Cycl Agroecosyst 94(1):111–122CrossRefGoogle Scholar
  11. 11.
    Cong Z, Yazhen S, Changwen D, Jianmin Z, Huoyan W, Xiaoqin C (2010) Evaluation of waterborne coating for controlled-release fertilizer using wurster fluidized bed. Ind Eng Chem Res 49(20):9644–9647CrossRefGoogle Scholar
  12. 12.
    Pulat M, Akalin GO (2013) Preparation and characterization of gelatin hydrogel support for immobilization of Candida Rugosa lipase. Artif Cells Nanomed Biotechnol 41(3):145–151CrossRefGoogle Scholar
  13. 13.
    Pulat M, Akalin GO, Karahan ND (2014) Lipase release through semi-interpenetrating polymer network hydrogels based on chitosan, acrylamide, and citraconic acid. Artif Cells Nanomed Biotechnol 42(2):121–127CrossRefGoogle Scholar
  14. 14.
    Wu L, Liu M, Liang R (2008) Preparation and properties of a double-coated slow-release NPK compound fertilizer with superabsorbent and water-retention. Bioresour Technol 99(3):547–554CrossRefGoogle Scholar
  15. 15.
    Shavit U, Reiss M, Shaviv A (2003) Wetting mechanisms of gel-based controlled-release fertilizers. J Control Release 88(1):71–83CrossRefGoogle Scholar
  16. 16.
    Pulat M, Yoltay N (2016) Smart fertilizers: preparation and characterization of gelatin-based hydrogels for controlled release of MAP and AN fertilizers. Agrochim -Pisa Univ Press 60(4):249–261Google Scholar
  17. 17.
    Pulat M, Uğurlu N (2016) Preparation and characterization of biodegradable gelatin-PAAm-based IPN hydrogels for controlled release of maleic acid to improve the solubility of phosphate. Soft Mater 14(4):217–227CrossRefGoogle Scholar
  18. 18.
    Popa EG, Gomes ME, Reis RL (2011) Cell delivery systems using alginate–carrageenan hydrogel beads and fibers for regenerative medicine applications. Biomacromol 12(11):3952–3961CrossRefGoogle Scholar
  19. 19.
    Abad LV, Relleve LS, Aranilla CT, Rosa AMD (2003) Properties of radiation synthesized PVP-kappa carrageenan hydrogel blends. Radiat Phys Chem 68(5):901–908CrossRefGoogle Scholar
  20. 20.
    Salgueiro AM, Daniel-da-Silva AL, Fateixa S, Trindade T (2012) κ-Carrageenan hydrogel nanocomposites with release behavior mediated by morphological distinct Au nanofillers. Carbohydr Polym 91(1):100–109CrossRefGoogle Scholar
  21. 21.
    Daniel-da-Silva AL, Ferreira L, Gil AM, Trindade T (2011) Synthesis and swelling behavior of temperature responsive κ-carrageenan nanogels. J Colloid Interface Sci 355(2):512–517CrossRefGoogle Scholar
  22. 22.
    Popa EG, Caridade SG, Mano JF, Reis RL, Gomes ME (2015) Chondrogenic potential of injectable κ-carrageenan hydrogel with encapsulated adipose stem cells for cartilage tissue-engineering applications. J Tissue Eng Regen Med 9(5):550–563CrossRefGoogle Scholar
  23. 23.
    Chang C, Duan B, Cai J, Zhang L (2010) Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Eur Polym J 46(1):92–100CrossRefGoogle Scholar
  24. 24.
    Gao X, He C, Xiao C, Zhuang X, Chen X (2013) Biodegradable pH-responsive polyacrylic acid derivative hydrogels with tunable swelling behavior for oral delivery of insulin. Polymer 54(7):1786–1793CrossRefGoogle Scholar
  25. 25.
    Bao Y, Ma J, Li N (2011) Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly (AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel. Carbohyd Polym 84(1):76–82CrossRefGoogle Scholar
  26. 26.
    Wang W, Wang A (2010) Synthesis and swelling properties of pH-sensitive semi-IPN superabsorbent hydrogels based on sodium alginate-g-poly(sodium acrylate) and polyvinylpyrrolidone. Carbohyd Polym 80(4):1028–1036CrossRefGoogle Scholar
  27. 27.
    Loh XJ, Peh P, Liao S, Sng C, Li J (2010) Controlled drug release from biodegradable thermoresponsive physical hydrogel nanofibers. J Control Release 143(2):175–182CrossRefGoogle Scholar
  28. 28.
    Dang QF, Yan JQ, Li JJ, Cheng XJ, Liu CS, Chen XG (2011) Controlled gelation temperature, pore diameter and degradation of a highly porous chitosan-based hydrogel. Carbohyd Polym 83(1):171–178CrossRefGoogle Scholar
  29. 29.
    Deshmukh M, Singh Y, Gunaseelan S, Gao D, Stein S, Sinko PJ (2010) Biodegradable poly(ethylene glycol) hydrogels based on a self-elimination degradation mechanism. Biomaterials 31(26):6675–6684CrossRefGoogle Scholar
  30. 30.
    Tan R, She Z, Wang M, Fang Z, Liu Y, Feng Q (2012) Thermo-sensitive alginate-based injectable hydrogel for tissue engineering. Carbohyd Polym 87(2):1515–1521CrossRefGoogle Scholar
  31. 31.
    Varghese JS, Chellappa N, Fathima NN (2014) Gelatin-carrageenan hydrogels: role of pore size distribution on drug delivery process. Colloids Surf B Biointerfaces 113:346–351CrossRefGoogle Scholar
  32. 32.
    Sarkar DJ, Singh A, Mandal P, Kumar A, Parmar BS (2015) Synthesis and characterization of poly (CMC-gcl-PAam/Zeolite) superabsorbent composites for controlled delivery of zinc micronutrient: swelling and release behavior. Polym-Plast Technol 54(4):357–367CrossRefGoogle Scholar
  33. 33.
    Han J, Guenier A, Salmieri S, Lacroix M (2008) Alginate and chitosan functionalization for micronutrient encapsulation. J Agric Food Chem 56:2528–2535CrossRefGoogle Scholar
  34. 34.
    Ma Z, Jia X, Hu J, Liu Z, Wang H, Zhou F (2013) Mussel-inspired thermosensitive polydopamine-graft-poly(N-isopropylacrylamide) coating for controlled-release fertilizer. J Agric Food Chem 61(50):12232–12237CrossRefGoogle Scholar
  35. 35.
    Jamnongkan T, Kaewpirom S (2010) Potassium release kinetics and water retention of controlled-release fertilizers based on chitosan hydrogels. J Polym Environ 18(3):413–421CrossRefGoogle Scholar
  36. 36.
    Wu L, Liu M (2008) Preparation and properties of chitosan-coated NPK compound fertilizer with controlled-release and water-retention. Carbohyd Polym 72(2):240–247CrossRefGoogle Scholar
  37. 37.
    Jin S, Yue G, Feng L, Han Y, Yu X, Zhang Z (2011) Preparation and properties of a coated slow-release and water-retention biuret phosphoramide fertilizer with superabsorbent. J Agric Food Chem 59(1):322–327CrossRefGoogle Scholar
  38. 38.
    Distantina S, Rochmadi R, Fahrurrozi M, Wiratni W (2013) Preparation and characterization of glutaraldehyde-crosslinked kappa carrageenan hydrogel. Eng J 17(3):58–66CrossRefGoogle Scholar
  39. 39.
    Akalin GO, Pulat M (2018) Preparation and characterization of nanoporous sodium carboxymethyl cellulose hydrogel beads. J Nanomater.  https://doi.org/10.1155/2018/9676949 Google Scholar
  40. 40.
    Islam A, Yasin T, Bano I, Riaz M (2012) Controlled release of aspirin from pH- sensitive chitosan/poly (vinyl alcohol) hydrogel. J Appl Polym 124(5):4184–4192CrossRefGoogle Scholar
  41. 41.
    Pereira L, Amado AM, Critley AT, Van de Velde F, Ribeiro-Claro PJA (2009) Identification of selected seaweed polysaccharides (phycocolloids) by vibrational spectroscopy (FTIR-ATR and FT-Raman). Food Hydrocoll 23(7):1903–1909CrossRefGoogle Scholar
  42. 42.
    Tan H, DeFail AJ, Rubin JP, Chu CR, Marra KG (2010) Novel multiarm PEG-based hydrogels for tissue engineering. J Biomed Mater Res A 92(3):979–987Google Scholar
  43. 43.
    Yi G, Huang Y, Xiong F, Liao B, Yang J, Chen X (2011) Preparation and swelling behaviors of rapid responsive semi-IPN NaCMC/PNIPAm hydrogels. J Wuhan Univ Technol-Mater Sci Ed 26(6):1073–1078CrossRefGoogle Scholar
  44. 44.
    Hezaveh H, Muhamad II (2013) Modification and swelling kinetic study of kappa-carrageenan-based hydrogel for controlled release study. J Taiwan Inst Chem Eng 44(2):182–191CrossRefGoogle Scholar
  45. 45.
    Gao X, He C, Xiao C, Zhuang X, Chen X (2012) Synthesis and characterization of biodegradable pH-sensitive poly(acrylic acid) hydrogels crosslinked by 2-hydroxyethyl methacrylate modified poly(l-glutamic acid). Mater Lett 77:74–77CrossRefGoogle Scholar
  46. 46.
    Liu Z, Yang Z, Luo Y (2012) Swelling, pH sensitivity, and mechanical properties of poly(acrylamide-co-sodium methacrylate) nanocomposite hydrogels impregnated with carboxyl-functionalized. Polym Compos 33(5):665–674CrossRefGoogle Scholar
  47. 47.
    Hu X, Li D, Zhou F, Gao C (2011) Biological hydrogel synthesized from hyaluronic acid, gelatin and chondroitin sulfate by click chemistry. Acta Biomater 7(4):1618–1626CrossRefGoogle Scholar
  48. 48.
    Zamora-Mora V, Velasco D, Hernández R, Mijangos C, Kumacheva E (2014) Chitosan/agarose hydrogels: cooperative properties and microfluidic preparation. Carbohydr Polym 111:348–355CrossRefGoogle Scholar
  49. 49.
    Jamnongkan T, Kaewpirom S (2010) Controlled-release fertilizer based on chitosan hydrogel: phosphorus release kinetics. Sci J UBU 1(1):43–50Google Scholar
  50. 50.
    Rudzinski WE, Chipuk T, Dave AM, Kumbar SG, Aminabhavi TM (2003) pH-sensitive acrylic-based copolymeric hydrogels for the controlled release of a pesticide and a micronutrient. J Appl Polym Sci 87:394–403CrossRefGoogle Scholar
  51. 51.
    Abedi-Koupai J, Varshosaz J, Mesforoosh M, Khoshgoftarmanesh AH (2012) Controlled release of fertilizer microcapsules using ethylene vinyl acetate polymer to enhance micronutrient and water use efficiency. J Plant Nutr 35:1130–1138CrossRefGoogle Scholar
  52. 52.
    Saruchi Kaith BS, Jindal R, Kapur GS (2013) Enzyme-based green approach for the synthesis of gum tragacanth and acrylic acid cross-linked hydrogel: its utilization in controlled fertilizer release and enhancement of water-holding capacity of soil. Iran Polym J 22:561–570CrossRefGoogle Scholar
  53. 53.
    Li Q, Wu S, Ru T, Wang L, Xing G, Wang J (2012) Synthesis and performance of polyurethane coated urea as slow/controlled release fertilizer. J Wuhan Univ Technol-Mater Sci Ed 27(1):126–129CrossRefGoogle Scholar
  54. 54.
    Singh B (2007) Psyllium as therapeutic and drug delivery agent. Int J Pharm 334(1–2):1–14CrossRefGoogle Scholar
  55. 55.
    Adams C, Frantz J, Bugbee B (2013) Macro- and micronutrient-release characteristics of three polymer-coated fertilizers: Theory and measurements. J Plant Nutr Soil Sci 176(1):76–88CrossRefGoogle Scholar
  56. 56.
    Tomaszewska M, Jarosiewicz A (2004) Polysulfone coating with starch addition in CRF formulation. Desalination 163(1–3):247–252CrossRefGoogle Scholar
  57. 57.
    Jayakumar R, Prabaharan M, Reis RL, Mano JF (2005) Graft copolymerized chitosan—present status and applications. Carbohyd Polym 62(2):142–158CrossRefGoogle Scholar
  58. 58.
    Bajpai AK, Giri A (2002) Swelling dynamics of a macromolecular hydrophilic network and evaluation of its potential for controlled release of agrochemicals. React Funct Polym 53(2–3):125–141CrossRefGoogle Scholar
  59. 59.
    Sankar C, Mishra B (2003) Development and in vitro evaluation of gelatin A microspheres of Ketorolac tromethamine for intranasal administration. Acta Pharm 53:101–110Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Scientific and Technological Application and Research CenterAksaray UniversityAksarayTurkey
  2. 2.Chemistry DepartmentGazi UniversityAnkaraTurkey

Personalised recommendations