Polymer Bulletin

, Volume 77, Issue 2, pp 929–948 | Cite as

Thermal characterization by DSC and TGA analyses of PVA hydrogels with organic and sodium MMT

  • Fatiha ReguiegEmail author
  • Lucia Ricci
  • Nabahat Bouyacoub
  • Mohamed Belbachir
  • Monica Bertoldo
Original Paper


Polyvinyl alcohol (PVA) hydrogels were prepared by a cyclic freezing–thawing technique without any cross-linker agent, using PVA and Maghnite water dispersion with different ratios. The obtained results have shown a higher thermal stability of samples with sodium than with alkylammonium Maghnite. Furthermore, thermal stability was maximum at the lowest investigated Maghnite/PVA ratio, but higher than for the pure PVA at all the investigated compositions. DSC analysis has shown both a low crystal degree and a low heat capacity jump at the glass transition temperature for samples with high Maghnite content. This phase does not seem to depend on the kind of cations, sodium or alkylammonium into the gallery of the clay.



The author thanks Pr. A. Bendiaballah for his help in English language.


  1. 1.
    Hassan CM, Trakampan P, Peppas NA (2002) Water solubility characteristics of poly(vinyl alcohol) and gels prepared by freezing/thawing processes. In: Amjad Z (ed) Water soluble polymers. Springer, BostonGoogle Scholar
  2. 2.
    Prashant PK, Vivek BR, Deepashree ND, Pranav PP (2012) Hydrogels as a drug delivery system and applications. Int J Pharm Sci 4(1):1–7Google Scholar
  3. 3.
    Muppalaneni S, Omidian H (2013) Polyvinyl alcohol in medicine and pharmacy: a perspective. J Dev Drugs 2:3CrossRefGoogle Scholar
  4. 4.
    Paranhos M, Bluma Soares G, Renata Oliveira N, Luiz Pessan A (2007) Poly(vinylalcohol)/clay-based nanocomposite hydrogels: swelling behavior and characterization. Macromol Mater Eng 292(5):620–626CrossRefGoogle Scholar
  5. 5.
    Hassan CM, Peppas NA (2000) Structure and morphology of freeze/thawed PVA hydrogels. Macromolecules 33:2472–2479CrossRefGoogle Scholar
  6. 6.
    Peppas NA, Stauffer SR (1991) Reinforced uncrosslinked poly(vinyl alcohol) gels produced by cyclic freezing-thawing processes. J Control Release 16:305–310CrossRefGoogle Scholar
  7. 7.
    Zhao F, Yao D, Guo R, Deng L, Dong A, Zhang J (2015) Composites of polymer hydrogels and nanoparticulate systems for biomedical and pharmaceutical applications. Nanomaterials 5:2054–2130CrossRefGoogle Scholar
  8. 8.
    Lakouraj MM, Tajbakhsh M, Mokhtary M (2005) Synthesis and swelling characterization of cross-linked PVP/PVA hydrogels. Iran Polym J 14(12):1022–1030Google Scholar
  9. 9.
    Gonzalez JS, Maiolo AS, Hoppe CE, Alvarez VA (2012) Composite gels based on poly(vinyl alcohol) for biomedical Uses. Proc Mat Sci 1:483–490Google Scholar
  10. 10.
    Kokabi M, Sirousazar M, Hassan ZM (2007) PVA-clay nanocomposite hydrogels for wound dressing. Eur Polym J 43(3):773–781CrossRefGoogle Scholar
  11. 11.
    Sirousazar M, Kokabi M, Hassan ZM (2012) Swelling behavior and structural characteristics of polyvinyl alcohol/montmorillonite nanocomposite hydrogels. J Appl Polym Sci 123(1):50–58CrossRefGoogle Scholar
  12. 12.
    Karimi A, Wan Daud WMA (2017) Materials, preparation, and characterization of PVA/MMT nanocomposite hydrogels. Rev Polym Compos 38(6):1086–1102CrossRefGoogle Scholar
  13. 13.
    Noor S, Kokabia M, Hassan ZM (2015) Nanoclay enhanced the mechanical properties of poly(vinylalcohol)/chitosan/montmorillonite nanocomposite hydrogel as wound dressing. Proc Mat Sci 11:152–156Google Scholar
  14. 14.
    Reguieg F, Sahli N, Belbachir M (2017) Hydrogel composite of poly(vinylalcool) with unmodified montmorillonite. Curr Chem Lett 6:69–76CrossRefGoogle Scholar
  15. 15.
    Karimi A, Wan Daud WMA (2016) Comparison the properties of PVA/Na + MMT nanocomposite hydrogels prepared by physical and physicochemical crosslinking. Polym Compos 37(3):897–906CrossRefGoogle Scholar
  16. 16.
    Sirousazar M, Kokabi M, Hassan ZM, Bahramian AR (2012) Polyvinyl alcohol/Na-montmorillonite nanocomposite hydrogels prepared by freezing–thawing method: structural, mechanical, thermal, and swelling properties. J Macromol Sci B 51(7):1335–1350CrossRefGoogle Scholar
  17. 17.
    Gu Y, Ye L (2009) Study on the polyvinylalcohol/montmorillonite composite hydrogel. Polym Plast Technol Eng 48(6):595–601CrossRefGoogle Scholar
  18. 18.
    Sirousazar M, Kokabi M, Hassan ZM (2011) In vivo and cytotoxic assays of a poly(vinyl alcohol)/clay nanocomposite hydrogel wound dressing. J Biomater Sci Polym Ed 22(8):1023–1033CrossRefGoogle Scholar
  19. 19.
    Paranhos CM, Soares BG, Machado JC, Windmoller D, Pessa LA (2007) Microstructure and free volume evaluation of poly(vinyl alcohol) nanocomposite hydrogels. Eur Polym J 43:4882–4890CrossRefGoogle Scholar
  20. 20.
    Belbachir M, Bensaoula A (2006) Composition and method for catalysis using bentonites. US 7094823 B2Google Scholar
  21. 21.
    Reguieg F, Sahli N, Belbachir M, Lutz PJ (2006) One-step synthesis of bis-macromonomers of poly(1,3-dioxolane) catalyzed by maghnite-H. J App Polym Sci 99(6):3147–3152CrossRefGoogle Scholar
  22. 22.
    Bensaada N, Ayat M, Meghabar R, Belbachir M (2015) The synthesis of polystyrene with a new chemical approach. Curr Chem Lett 4(2):55–60CrossRefGoogle Scholar
  23. 23.
    Harrane A, Belbachir M (2007) Synthesis of biodegradable polycaprolactone/montmorillonite nanocomposites by direct in situ polymerization catalysed by exchanged clay. Macromol Symp 247(1):379–384CrossRefGoogle Scholar
  24. 24.
    Reguieg F, Sahli N, Belbachir M (2015) Nanocomposite hydrogels based on water soluble polymer and montmorillonite-Na+. Orient J Chem 31(3):1645–1657CrossRefGoogle Scholar
  25. 25.
    Ricciardi R, Auriemma F, De Rosa C, Lauprêtre F (2004) X-ray diffraction analysis of poly(vinyl alcohol) hydrogels, obtained by freezing and thawing techniques. Macromolecules 37(5):1921–1927CrossRefGoogle Scholar
  26. 26.
    Passaglia E, Bertoldo M, Ceriegi S, Sulcis R, Narducci P, Conzatti L (2008) Oxygen and water vapor barrier properties of MMT nanocomposites from low density polyethylene or EPM with grafted succinic groups. J Nanosci Nanotechnol 8(4):1690–1699CrossRefGoogle Scholar
  27. 27.
    Chang J, Jang T, Ihn KJ, Lee W, Sur GS (2003) Poly (vinyl alcohol) nanocomposites with different clays: pristine clays and organoclays. J App Polym Sci 90:3208–3214CrossRefGoogle Scholar
  28. 28.
    Xi Y, Martens W, He H, Frost RL (2005) Thermogravimetric analysis of organoclays intercalated with the surfactant octadecyltrimethylammonium bromide. J Therm Anal Calorim 81:91–97CrossRefGoogle Scholar
  29. 29.
    Li CP, Hou TT, Vongsvivut J, Li YZ, She XD, She FH et al (2015) Simultaneous crystallization and decomposition of PVA/MMT composites during non-isothermal process. Thermochim Acta 618:26–35CrossRefGoogle Scholar
  30. 30.
    Holland BJ, Hay JN (2001) The thermal degradation of poly(vinyl alcohol). Polymer 42(16):6775–6783CrossRefGoogle Scholar
  31. 31.
    Endo R, Amiya S, Hikosaka M (2003) Conditions for melt crystallization without thermal degradation and equilibrium melting temperature of atactic poly(vinyl alcohol). J Macromol Sci B 42(3–4):793–820CrossRefGoogle Scholar
  32. 32.
    Tubbs RK (1965) Melting point and heat of fusion of poly(vinyl alcohol). J Polym Sci Part A 3(12):4181–4189Google Scholar
  33. 33.
    Peppas NA, Hansen PJ (1982) Crystallization kinetics of poly(vinyl alcohol). J Appl Polym Sci 27(12):4787–4797CrossRefGoogle Scholar
  34. 34.
    Hickey AS, Peppas NA (1995) Mesh size and diffusive characteristics of semicrystalline poly(vinyl alcohol) membranes prepared by freezing/thawing techniques. J Memb Sci 107:229–237CrossRefGoogle Scholar
  35. 35.
    Thomas D, Cebe P (2017) Self-nucleation and crystallization of polyvinyl alcohol. J Therm Anal Calorim 127(1):885–894CrossRefGoogle Scholar
  36. 36.
    Schick CA, Wurm MA (2001) Vitrification and devitrification of the rigid amorphous fraction of semicrystalline polymers revealed from frequency-dependent heat capacity. Colloid Polym Sci 279:800–806CrossRefGoogle Scholar
  37. 37.
    Signori F, Pelagaggi M, Bronco S, Righetti MC (2012) Amorphous/crystal and polymer/filler interphases in biocomposites from poly(butylene succinate). Thermochim Acta 543:74–81CrossRefGoogle Scholar
  38. 38.
    Wurm MA, Kretzschmar IB, Pospiech D, Schick CA (2010) Retarded crystallization in polyamide/layered silicates nanocomposites caused by an immobilized interphase. Macromolecules 43(3):1480–1487CrossRefGoogle Scholar
  39. 39.
    Prevosto D, Lucchesi M, Bertoldo M, Passaglia E, Ciardelli F, Rolla P (2010) Interfacial effects on the dynamics of ethylene-propylene copolymer nanocomposite with inorganic clays. J Non-Cryst Solids 356(11–17):568–573CrossRefGoogle Scholar
  40. 40.
    Passaglia E, Bertoldo M, Ciardelli F, Prevosto D, Lucchesi M (2008) Evidences of macromolecular chains confinement of ethylene-propylene copolymer in organophilic montmorillonite nanocomposites. Eur Polym J 44(5):1296–1308CrossRefGoogle Scholar
  41. 41.
    Peppas N (1977) Infrared spectroscopy of semicrystalline poly(vinylalcohol) networks. Makcromol Chem 178(2):595–601CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of Polymer Chemical, Department of Chemistry, Faculty of Exact and Applied SciencesUniversity of Oran1 Ahmed BenbellaOranAlgeria
  2. 2.Ecole superieure en génie electrique et énergétique d’ OranOranAlgeria
  3. 3.Istituto per i Processi Chimico-Fisici, Consiglio Nazionale delle Ricerche (CNR-IPCF)PisaItaly
  4. 4.Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche (CNR-ISOF)BolognaItaly

Personalised recommendations