Advertisement

Gamma irradiation effects on conductivity and dielectric behaviour of PEO-based nano-composite polymer electrolyte systems

  • V. R. SunithaEmail author
  • S. Radhakrishnan
Original Paper
  • 13 Downloads

Abstract

The effect of gamma irradiation on physical and electrical properties of polyethylene oxide (PEO)-based nano-composite polymer electrolyte films was investigated. The structural change induced and the reduction in crystallinity of the electrolyte film before and after irradiation were confirmed by FTIR spectra and X-ray diffraction studies. Microstructural studies carried out by scanning electron microscope technique reveal significant change in the surface morphology on irradiation. The bulk conductivities of the films were studied using standard impedance spectroscopic technique. A maximum ionic conductivity of 1.717 × 10−4 S cm−1 was observed for 40 kGy radiation dose, which is higher than earlier reported studies. Ion dynamics behaviour of the films was studied by frequency-dependent conductivity measurements which follow universal power law. The dielectric constant tends to be higher for films with higher lithium ion conductivity.

Keywords

Polymer electrolyte Conductivity Gamma irradiation Dielectric constant 

Notes

Acknowledgements

The authors are thankful to Dr. Lokesh, Assistant Professor, Vijaya College, Bangalore, India, for his help in getting the films gamma irradiated and PES University management.

References

  1. 1.
    Armand M (1994) The history of polymer electrolytes. Solid State Ionics 69:309–319CrossRefGoogle Scholar
  2. 2.
    Bac A, Ciosek M, Bukat M, Marczewski M, Marczewska H, Wieczorek W (2006) The effect of type of the inorganic filler and dopant salt concentration on the PEO–LiClO4 based composite electrolyte–lithium electrode interfacial resistivity. J Power Sources 159:405–411CrossRefGoogle Scholar
  3. 3.
    Alloin Fannie, D’Aprea Alessandra, El Kissi Nadia, Dufresne Alain, Bossarda Frédéric (2010) Nanocomposite polymer electrolyte based on whisker or microfibrils polyoxyethylene nanocomposites. Electrochim Acta 55:5186–5194CrossRefGoogle Scholar
  4. 4.
    Labrèche C, Lévesche I, Prud’homme J (1996) An appraisal of tetraethylsulfamide as plasticizer for poly(ethylene oxide) − LiN(CF3SO2)2 rubbery electrolytes. Macromolecules 29:7795–7801CrossRefGoogle Scholar
  5. 5.
    Quartarone E, Mustarelli P, Magistris A (1998) PEO-based composite polymer electrolytes. Solid State Ionics 110:1–14CrossRefGoogle Scholar
  6. 6.
    Wieczorek W, Stevens JR, Florjanczyk Z (1996) Composite polyether based solid electrolytes-The Lewis acid-base approach. Solid State Ionics 85:67–72CrossRefGoogle Scholar
  7. 7.
    Croce F, Appetecchi GB, Persie L, Scrosati B (1998) Nanocomposite polymer electrolytes for lithium batteries. Nature 394:456–458CrossRefGoogle Scholar
  8. 8.
    Chung SH, Wang Y, Persi L, Croce F, Greenbaum SG, Scrosati B, Plichta E (2001) Enhancement of ion transport in polymer electrolytes by addition of nanoscale inorganic oxides. J Power Sources 97–98:644–648CrossRefGoogle Scholar
  9. 9.
    Jiang G, Maeda S, Yang H, Saito Y, Tanase S, Sakai T (2005) All solid-state lithium-polymer battery using poly(urethane acrylate)/nano-SiO2 composite electrolytes. J Power Sources 141:143–148CrossRefGoogle Scholar
  10. 10.
    Akhtar MS, Choi D-J, Lee S-K, Yang O-B (2010) Effect of electron beam irradiation on the electrochemical properties of heteropolyacid–polyethylene oxide composite electrolyte for dye-sensitized solar cell. Curr Appl Phys 10:S161–S164CrossRefGoogle Scholar
  11. 11.
    Maitra Minakshi, Verma KC, Sinha Mrinal, Kumar Rajesh, Middya TR, Tarafdar S, Sen P, Bandyopadhyay SK, De Udayan (2006) DSC characterization of ion beam modifications in ion conducting PEO–salt polymers. Nucl Instrum Methods Phys Res B 244:239–242CrossRefGoogle Scholar
  12. 12.
    Sinha M, Goswami MM, Mal D, Middya TR, Tarafdar S, De U, Chaudhuri SK, Das D (2008) Effect of gamma irradiation on the polymer electrolyte PEO-NH4ClO4. Ionics 14:323–327CrossRefGoogle Scholar
  13. 13.
    Raghu S, Archana K, Sharanappa C, Ganesh S, Devendrappa H (2015) The physical and chemical properties of gamma ray irradiated polymer electrolyte films. J Non-Crystalline Solids 426:55–62CrossRefGoogle Scholar
  14. 14.
    Sinha D, Sahoo KL, Sinha UB, Swu T, Chemseddine A, Fink D (2004) Gamma-induced modifications of polycarbonate polymer. Radiat Eff Defects Solids 159:587–595CrossRefGoogle Scholar
  15. 15.
    Sharma Tanu, Aggarwal Sanjeev, Kumar Shyam, Mittal VK, Kalsi PC, Manchanda VK (2007) Effect of gamma irradiation on the optical properties of CR-39 polymer. J Mater Sci 42:1127–1130CrossRefGoogle Scholar
  16. 16.
    Papke BL, Ratner MA, Shriver DF (1982) Vibrational spectroscopic determination of structure and ion pairing in complexes of poly (ethylene oxide) with lithium salts. J Electrochem Soc 129:1434CrossRefGoogle Scholar
  17. 17.
    Sunitha VR, Radhakrishnan S (2016) Impedance and dielectric studies of nanocomposite polymer electrolyte systems using MMT and ferroelectric fillers. Ionics 22:2437–2446CrossRefGoogle Scholar
  18. 18.
    Mohd Noor SAB (2010) Solid polymeric electrolyte of poly(ethylene)oxide-50% epoxidized natural rubber-lithium triflate (PEO-ENR50-LiCF3SO3). Nat Sci 02(3):190–196Google Scholar
  19. 19.
    Xinming Q, Ningyu G, Zhiliang C, Xiurong Y, Erkang W, Shaojun D (2001) Impedance study of (PEO)10LiClO4-Al2O3 composite polymer electrolyte with blocking electrodes. Electrochim Acta 46:1829–1836CrossRefGoogle Scholar
  20. 20.
    Armstrong RD, Firman RE, Thirs HR (1973) The AC impedance of complex electrochemical reactions. Faraday Discuss Chem Soc 56:244–263CrossRefGoogle Scholar
  21. 21.
    Qian X, Gu N, Cheng Z et al (2002) Plasticizer effect on the ionic conductivity of PEO-based polymer electrolyte. Mater Chem Phys 74:98–103CrossRefGoogle Scholar
  22. 22.
    Singh KP, Gupta PN (1998) Study of dielectric relaxation in polymer electrolytes. Eur Polym J 34:1023–1029CrossRefGoogle Scholar
  23. 23.
    Druger Stephen D, Ratner Mark A (1985) Generalized hopping model for frequency dependent transport in a dynamically disordered medium with application to polymer solid electrolytes. Phys Rev B 31:3939–3947CrossRefGoogle Scholar
  24. 24.
    Raghu S, Archana K, Sharanappa C, Ganesh S, Devendrappa H (2016) Electron beam and gamma ray irradiated polymer electrolyte films: dielectric properties. J Radiat Res Appl Sci 9:117–124CrossRefGoogle Scholar
  25. 25.
    Mishra R, Rao KJ (1998) Electrical conductivity studies of poly (ethylene-oxide)-poly (vinyl-alcohol) blends. Solid State Ionics 106:113–127CrossRefGoogle Scholar
  26. 26.
    Campbell JA, Goodwin AA, Simon GP (2001) Dielectric relaxation studies of miscible polycarbonate/polyester blends. Polymer 42:4731–4741CrossRefGoogle Scholar
  27. 27.
    Aziz Shujahadeen B (2018) The mixed contribution of ionic and electronic carriers to conductivity in Chitosan based solid electrolytes mediated by CuNt Salt. J Inorg Organomet Polym Mater 28:1942–1952CrossRefGoogle Scholar
  28. 28.
    Ramesh S, Yahaya AH, Arof AK (2002) Dielectric behaviour of PVC-based polymer electrolytes. Solid State Ionics 152–153:291–294CrossRefGoogle Scholar
  29. 29.
    Yahya MZA, Arof AK (2004) Conductivity and X-ray photoelectron studies on lithium acetate doped chitosan films. Carbohydr Polym 55:95–100CrossRefGoogle Scholar
  30. 30.
    Dutta A, Sinha TP, Jena P, Adak S (2008) Ac conductivity and dielectric relaxation in ionically conducting soda–lime–silicate glasses. J Non-Crystalline Solids 354:3952–3957CrossRefGoogle Scholar
  31. 31.
    Mishra R, Baskaran N, Ramakrishnan PA, Rao KJ (1998) Lithium ion conduction in extreme polymer in salt regime. Solid State Ionics 112:261–273CrossRefGoogle Scholar
  32. 32.
    Aziz Shujahadeen B, Abdullah Ranjdar M, Kadir MFZ, Ahmed Hameed M (2019) Non suitability of silver ion conducting polymer electrolytes based on chitosan mediated by barium titanate (BaTiO3) for electrochemical device applications. Electrochim Acta 296:494–507CrossRefGoogle Scholar
  33. 33.
    Nath AK, Kumar A (2014) Scaling of AC conductivity, electrochemical and thermal properties of ionic liquid based polymer nanocomposite electrolytes. Electrochim Acta 129:177–186CrossRefGoogle Scholar
  34. 34.
    Chaurasia SK, Saroj AL, Shalu Singh VK, Tripathi AK, Gupta AK, Verma YL, Singh RK (2015) Studies on structural, thermal and AC conductivity scaling of PEO-LiPF6 polymer electrolyte with added ionic liquid [BMIMPF6]. AIP Adv 5(1–12):077178CrossRefGoogle Scholar
  35. 35.
    Jonscher AK (1977) The universal dielectric response. Nature 267:673–679CrossRefGoogle Scholar
  36. 36.
    Aziz SB, Abidin ZHZ (2014) Electrical and morphological analysis of chitosan:AgTf solid electrolyte. Mater Chem Phys 144:280–286CrossRefGoogle Scholar
  37. 37.
    Kulshrestha N, Chatterjee B, Gupta PN (2014) Structural, thermal, electrical, and dielectric properties of synthesized nanocomposite solid polymer electrolytes. High Perform Polym 26(6):677–688CrossRefGoogle Scholar
  38. 38.
    Kumar A, Deka M, Banerjee S (2010) Enhanced ionic conductivity in oxygen ion irradiated poly (vinylidene fluoride-hexafluoro-propylene) based nanocomposite gel polymer electrolytes. Solid State Ionics 181:609–615CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsPES UniversityBangaloreIndia

Personalised recommendations