Advertisement

Effect of reactive montmorillonite with amino on the properties of polyimide/montmorillonite nanocomposite

  • Shiwei ChenEmail author
  • Jixun Xie
  • Zhizhou Yang
Original Paper
  • 7 Downloads

Abstract

The polyimide/montmorillonite nanocomposite based on the reactive montmorillonite with amino was prepared via in situ polymerization. The reactive montmorillonite with amino was obtained by the intercalation and coupling reaction. The reactive montmorillonite could be dispersed well in the polyimide and had good compatibility with polyimide. The reactive montmorillonite influenced the crystal structure and the molecular weight of the polyimide. Polyimide/montmorillonite nanocomposite based on the reactive montmorillonite had uniform weight distribution. The light transmittance of polyimide nanocomposite decreased compared to pure polyimide. Thermal stability and mechanical properties of polyimide/montmorillonite nanocomposite were improved by adding small amount of the reactive montmorillonite with the amino. In contrast to pure polyimide, the tensile strength of polyimide nanocomposite increased by 54.6%, and Young’s modules increased to 2.02 from 1.56 GPa. Finally, the formation mechanism of the polyimide/montmorillonite nanocomposite based on the reactive montmorillonite with aminos was proposed. The approach of the preparation was also applied to other polymer nanocomposites.

Graphical abstract

Keywords

Polyimide Nanocomposites Reactive montmorillonite Mechanical property Thermal property 

Notes

Acknowledgements

The authors are thankful for the supports of National Youth Natural Science Foundation of China (No. 51503107) and Science Foundation of Shandong Province of China (No. ZR2018LE007).

References

  1. 1.
    Pavlidou S, Papaspyrides C (2008) A review on polymer-layered silicate nanocomposites. Prog Polym Sci 33(12):1119–1198CrossRefGoogle Scholar
  2. 2.
    Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng R Rep 28(1):1–63CrossRefGoogle Scholar
  3. 3.
    Lv G, Chen S, Zhu H, Li M, Yang Y (2018) Determination of the crucial functional groups in graphene oxide for vanadium oxide nanosheet fabrication and its catalytic application in 5-hydroxymethylfurfural and furfural oxidation. J Clean Prod 296:32–41CrossRefGoogle Scholar
  4. 4.
    Landfester K (2009) Miniemulsion polymerization and the structure of polymer and hybrid nanoparticles. Angew Chem Int Ed 48(25):4488–4507CrossRefGoogle Scholar
  5. 5.
    Bagotia N, Choudhary V, Sharma D (2018) A review on the mechanical, electrical and EMI shielding properties of carbon nanotubes and graphene reinforced polycarbonate nanocomposites. Polym Adv Technol 29(6):1547–1567CrossRefGoogle Scholar
  6. 6.
    Abdul R, Muhd J, Yehye W (2018) Nanocellulose reinforced as green agent in polymer matrix composites applications. Polym Adv Technol 29(6):1531–1546CrossRefGoogle Scholar
  7. 7.
    Ma J, Lv X, Gao D, Li Y, Lv B, Zhang J (2014) Nanocomposite-based green tanning process of suede leather to enhance chromium uptake. J Clean Prod 72:120–126CrossRefGoogle Scholar
  8. 8.
    Xie J, Wang J, Zhao J, Yang C, Li L, Lu C (2018) Synergism of self-wrinkling and ultrasonic cleaning to fabricate hierarchically patterned conducting films. Adv Mater Interfaces 5(21):1800905CrossRefGoogle Scholar
  9. 9.
    Lv G, Chen S, Zhu H, Li M, Yang Y (2018) Pyridinic-nitrogen-dominated nitrogen-doped graphene stabilized Cu for efficient selective oxidation of 5-hydroxymethfurfural. Appl Surf Sci 458:24–31CrossRefGoogle Scholar
  10. 10.
    Fleury D, Bomfim JAS, Vignes A, Girard C, Metz S, Muñoz F, R’Mili B, Ustache A, Guiot A, Bouillard JX (2013) Identification of the main exposure scenarios in the production of CNT-polymer nanocomposites by melt-moulding process. J Clean Prod 53(1):22–36CrossRefGoogle Scholar
  11. 11.
    Salehian P, Chung T-S (2017) Thermally treated ammonia functionalized graphene oxide/polyimide membranes for pervaporation dehydration of isopropanol. J Membr Sci 528:231–242CrossRefGoogle Scholar
  12. 12.
    Lu Y, Hao J, Xiao G, Zhao H, Hu Z, Wang T (2017) In situ polymerization and performance of alicyclic polyimide/graphene oxide nanocomposites derived from 6FAPB and CBDA. Appl Surf Sci 394:78–86CrossRefGoogle Scholar
  13. 13.
    Huang YS, Li K, Liu JJ, Zhong X, Duan XF, Shakir I, Xu YX (2017) Three-dimensional graphene/polyimide composite-derived flexible high-performance organic cathode for rechargeable lithium and sodium batteries. J Mater Chem A 5(6):2710–2716CrossRefGoogle Scholar
  14. 14.
    Xu LB, Chen GF, Wang W, Li L, Fang XZ (2016) A facile assembly of polyimide/graphene core-shell structured nanocomposites with both high electrical and thermal conductivities. Compos Part A Appl Sci Manuf 84:472–481CrossRefGoogle Scholar
  15. 15.
    Yang HS, Kim SH, Kannan AG, Kim SK, Park C, Kim DW (2016) Performance enhancement of silicon alloy-based anodes using thermally treated poly(amide imide) as a polymer binder for high performance lithium-ion batteries. Langmuir 32(13):3300–3307CrossRefGoogle Scholar
  16. 16.
    Liu C, Luo YF, Jia ZX, Li SQ, Huang D, Jia DM (2014) Particle configuration and properties of poly(vinyl chloride)/halloysite nanotubes nanocomposites via in situ suspension polymerization. Polym Compos 35(5):856–863CrossRefGoogle Scholar
  17. 17.
    Nikolaidis AK, Achilias DS, Karayannidis GP (2010) Synthesis and characterization of PMMA/organomodified montmorillonite nanocomposites prepared by in situ bulk polymerization. Ind Eng Chem Res 50(2):571–579CrossRefGoogle Scholar
  18. 18.
    De Azevedo W, Schwartz M, Do Nascimento G (2004) Synthesis and characterization of polyaniline/clay nanocomposite. Phys Status Solidi (c) 1(S2):S249–S255CrossRefGoogle Scholar
  19. 19.
    Shi Y, Peterson S, Sogah DY (2007) Surfactant-free method for the synthesis of poly(vinyl acetate) masterbatch nanocomposites as a route to ethylene vinyl acetate/silicate nanocomposites. Chem Mater 19(7):1552–1564CrossRefGoogle Scholar
  20. 20.
    Wheeler PA, Wang J, Baker J, Mathias LJ (2005) Synthesis and characterization of covalently functionalized laponite clay. Chem Mater 17(11):3012–3018CrossRefGoogle Scholar
  21. 21.
    Chen S, Lu X, Wang T, Zhang Z (2015) Preparation and characterization of mechanically and thermally enhanced polyimide/reactive halloysite nanotubes nanocomposites. J Polym Res 22(9):185CrossRefGoogle Scholar
  22. 22.
    Itagaki T, Kuroda K (2003) Organic modification of the interlayer surface of kaolinite with propanediols by transesterification. J Mater Chem 13(5):1064–1068.  https://doi.org/10.1039/b211844k CrossRefGoogle Scholar
  23. 23.
    Kaushik AK, Podsiadlo P, Qin M, Shaw CM, Waas AM, Kotov NA, Arruda EM (2009) The role of nanoparticle layer separation in the finite deformation response of layered polyurethane-clay nanocomposites. Macromolecules 42(17):6588–6595CrossRefGoogle Scholar
  24. 24.
    Chen S, Lu X, Wang T, Zhang Z (2016) Preparation and characterization of urea-formaldehyde resin/reactive kaolinite composites. Particuology 24:203–209CrossRefGoogle Scholar
  25. 25.
    Yahiaoui F, Benhacine F, Ferfera-Harrar H, Habi A, Hadj-Hamou AS, Grohens Y (2015) Development of antimicrobial PCL/nanoclay nanocomposite films with enhanced mechanical and water vapor barrier properties for packaging applications. Polym Bull 72(2):235–254CrossRefGoogle Scholar
  26. 26.
    Neto JCDM, Botan R, Lona LMF, Neto JE, Pippo WA (2015) Polystyrene/kaolinite nanocomposite synthesis and characterization via in situ emulsion polymerization. Polym Bull 72(3):387–404CrossRefGoogle Scholar
  27. 27.
    Fu X, Qutubuddin S (2001) Polymer–clay nanocomposites: exfoliation of organophilic montmorillonite nanolayers in polystyrene. Polymer 42(2):807–813CrossRefGoogle Scholar
  28. 28.
    Moon SY, Kim JK, Nah C, Lee YS (2004) Polyurethane/montmorillonite nanocomposites prepared from crystalline polyols, using 1,4-butanediol and organoclay hybrid as chain extenders. Eur Polym J 40(8):1615–1621CrossRefGoogle Scholar
  29. 29.
    Lan T, Kaviratna PD, Pinnavaia TJ (1994) On the nature of polyimide-clay hybrid composites. Chem Mater 6(5):573–575CrossRefGoogle Scholar
  30. 30.
    Tyan HL, Liu YC, Wei KH (1999) Thermally and mechanically enhanced clay/polyimide nanocomposite via reactive organoclay. Chem Mater 11(7):1942–1947CrossRefGoogle Scholar
  31. 31.
    Huang T, Lu R, Su C, Wang H, Guo Z, Liu P, Huang Z, Chen H, Li T (2012) Chemically modified graphene/polyimide composite films based on utilization of covalent bonding and oriented distribution. ACS Appl Mater Interfaces 4(5):2699–2708CrossRefGoogle Scholar
  32. 32.
    Park C, Smith JG Jr, Connell JW, Lowther SE, Working DC, Siochi EJ (2005) Polyimide/silica hybrid-clay nanocomposites. Polymer 46(23):9694–9701CrossRefGoogle Scholar
  33. 33.
    Huang CC, Jang GW, Chang KC, Hung W, Yeh JM (2008) High-performance polyimide-clay nanocomposite materials based on a dual intercalating agent system. Polym Int 57(4):605–611CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Shandong Provincial Key Laboratory of Processing and Testing Technology of Glass and Functional Ceramics, School of Material Science and EngineeringQilu University of Technology (Shandong Academy of Sciences)JinanPeople’s Republic of China

Personalised recommendations