Advertisement

Poly(p-phenylenediamine)-based nanocomposites with metal oxide nanoparticle for optoelectronic and magneto-optic application

  • Sudhir Kumar
  • Shyamal Baruah
  • Amrit PuzariEmail author
Original Paper
  • 7 Downloads

Abstract

Use of inorganic nanoparticles for the development of high-performance polymer nanocomposites is a common practice in polymer nanotechnology, because the decrease in particle size to smaller scale greatly influences the optical and magnetic characteristics of the resulting materials. In this work, synthesis and characterization of polymeric nanocomposites based on poly(p-phenylenediamine) and metal oxide nanoparticle are described. ZnO, Fe3O4 and TiO2 nanoparticles are used for the synthesis of the nanocomposites. In situ chemical oxidative polymerization method is employed in the presence of hydrogen peroxide as oxidant and cis-bis-glycinato copper (II) monohydrate as catalyst. Structural characterization is performed with FTIR, UV–Vis spectroscopy, thermogravimetric analysis, X-ray diffraction and also transmission electron microscopy. Morphological analysis reveals amorphous to semicrystalline nature of the polymer nanocomposites. Thermal characterization indicates the stability up to a temperature of 150 °C. Electrical conductivity is found in the range 10−10 S/cm for the polymer and 10−7 S/cm for the polymer nanocomposites, which falls in the range of semiconducting materials. Study of magnetic properties using vibrating sample magnetometer (VSM) technique reveals that Fe3O4 nanocomposite exhibits enhanced soft magnetic properties as it is clear from the coercivity, retentivity, magnetization and moment. Thus these polymeric nanocomposites are expected to find application in magneto-optic field as well as in organic light-emitting devices.

Keywords

Polymer nanocomposite Optoelectronics Fluorescence emitter Semiconductor Diode Magnetic properties Fe3O4 ZnO 

Notes

References

  1. 1.
    Li XG, Huang MR, Duan W (2002) Novel multifunctional polymers from aromatic diamines by oxidative polymerizations. Chem Rev 102:2925–3030CrossRefGoogle Scholar
  2. 2.
    Menard E, Meitl MA, Sun Y, Park JU, Shir DJL, Nam YL, Jeon S, Rogers JA (2007) Micro- and nanopatterning techniques for organic electronic and optoelectronic systems. Chem Rev 4:1117–1160CrossRefGoogle Scholar
  3. 3.
    Meneghetti P, Qutubuddin S (2006) Synthesis, thermal properties and applications of polymer-clay nanocomposites. Thermochim Acta 442:74–77CrossRefGoogle Scholar
  4. 4.
    Kaur G, Adhikari R, Cass P, Bown M, Gunatillake P (2015) Electrically conductive polymers and composites for biomedical applications. RSC Adv 5:37553–37567CrossRefGoogle Scholar
  5. 5.
    Peng C, Zhang S, Jewell D, Chen GZ (2008) Carbon nanotube and conducting polymer composites for supercapacitors. Prog Nat Sci 18:777–788CrossRefGoogle Scholar
  6. 6.
    Dhole S, Dake S, Prajapati TA, Helambe SN (2018) Effect of ZnO filler on structural and optical properties of polyanilineZnO nanocomposites. Proc Manufact. 20:127–134CrossRefGoogle Scholar
  7. 7.
    Kovacic P, Jones MB (1987) Dehydro coupling of aromatic nuclei by catalyst-oxidant systems: poly(p-phenylene). Chem Rev 87:357–379CrossRefGoogle Scholar
  8. 8.
    Shylesh S, Schünemann V, Thiel MR (2010) Magnetically separable nanocatalysts: bridges between homogeneous and heterogeneous catalysis. Angew Chem Int Ed 49:3428–3459CrossRefGoogle Scholar
  9. 9.
    Colombo M, Romero SC, Casula MF, Gutiérrez L, Morales MP, Böhm IB, Heverhagen JT, Prosperi D, Parak WJ (2012) Biological applications of magnetic nanoparticles. Chem Soc Rev 41:4306–4334CrossRefGoogle Scholar
  10. 10.
    Tang SC, Lo IM (2013) Magnetic nanoparticles: essential factors for sustainable environmental applications. Water Res 47:2613–2632CrossRefGoogle Scholar
  11. 11.
    Wang YJ, Larsson M, Huang WT, Chiou SH, Nicholls SJ, Cho JI, Liu DM (2016) The use of polymer bsed nanoparticles and nanostructured materials in treatment and diagnosis of cardiovascular diseases: recent advances and emerging designs. Prog Pol Sci 57:153–178CrossRefGoogle Scholar
  12. 12.
    Arianfar M (2016) Synthesis and dielectric properties of poly benzyl bis (thiosemicarbazone)/nano cerium oxide nanocomposites. Chem Sci J 7:143CrossRefGoogle Scholar
  13. 13.
    Shahnavaz Z, Lorestani F, Alias Y, Woi M (2014) Polypyrrole ZnFe2O4 magnetic nanocomposite with core-shell structure for glucose sensing. Appl Surf Sci 317:622–629CrossRefGoogle Scholar
  14. 14.
    Peiro AM, Domingo C, Peral J (2005) Nanostructured zinc oxide films grown from microwave activated aqueous solutions. Thin Solid Films 483:79–83CrossRefGoogle Scholar
  15. 15.
    Zhang QM, Li H, Poh M, Cheng ZY, Xu HS, Xia F (2002) An all-organic composite actuator material with a high dielectric constant. Nature 419:284–293CrossRefGoogle Scholar
  16. 16.
    Das-gupta DK (1991) Pyroelectricity in polymer. Ferroelectrics 118:165–189CrossRefGoogle Scholar
  17. 17.
    Wang Y, Sun C, Zhao X, Cui B, Zeng Z, WangA Liu G, Cui H (2016) The application of nano-TiO2 photo semiconductors in agriculture. Nanoscale Res Lett 11:529CrossRefGoogle Scholar
  18. 18.
    Uikey P, Vishwakarma K (2016) Review of zinc oxide (zno) nanoparticles applications and properties. IJETCSE 21:239–242Google Scholar
  19. 19.
    Ali A, Zafar H, Zia M, Haq I, Phull AR, Ali JS, Hussain A (2016) Synthesis and dielectric studies of magnetite nanoparticles. Nanotech Sci Appl 9:49–67CrossRefGoogle Scholar
  20. 20.
    Singh AK, Srivastava ON, Singh K (2017) Shape and size-dependent magnetic properties of Fe3O4 nanoparticles synthesized using piperidine. Nanoscale Res Lett 12:298CrossRefGoogle Scholar
  21. 21.
    Gu F, Wang SF, Lu MK, Zhou GJ, Xu D (2004) Photoluminescence properties of SnO2 nanoparticles synthesized by sol–gel method. J Phys Chem B 108:8119–8123CrossRefGoogle Scholar
  22. 22.
    Filatova EO, Konashuk AS (2015) Interpretation of the changing the band gap of Al2O3 depending on its crystalline form: connection with different local symmetries. J Phys Chem C 119:20755–20761CrossRefGoogle Scholar
  23. 23.
    Dhineshbabu NR, Rajendran V, Nithyavathy N, Vetumperumal R (2016) Study of structural and optical properties of cupric oxide nanoparticles. Appl Nanosci 6:933–939CrossRefGoogle Scholar
  24. 24.
    Zhao Y, Zhang Y, Zhu H, Hadjipanayis GC, Xiao JQ (2004) Low-temperature synthesis of hexagonal (Wurtzite) ZnS nanocrystals. J Am Chem Soc 126:6874–6875CrossRefGoogle Scholar
  25. 25.
    Parveen A, Dashpande R, Ahmed S, Roy AS (2013) Synthesis, characterisation, and DC conductivity of polyaniline-lead oxide composites. Chem Pap 67:350–356CrossRefGoogle Scholar
  26. 26.
    Sander D, Valenzuela SO, Makarov D, Marrows CH, Fullerton EE, Fischer P, McCord J, Vavassori P, Mangin S, PirroP Hillebrands B, Kent AD, Jungwirth T, Gutfleisch O, Kim CG, Berger A (2017) The 2017 magnetism roadmap. J Phys D Appl Phys 50:363001CrossRefGoogle Scholar
  27. 27.
    Sappati KK, Bhadra S (2018) Piezoelectric polymer and paper substrates. A Review. Sensors 18:3605CrossRefGoogle Scholar
  28. 28.
    Mishra YK, Adelung R (2018) ZnO tetrapod materials for functional applications. Materialstoday 21:631–651Google Scholar
  29. 29.
    Bhatia D, Sharma H, Meena RS, Palkar VR (2016) A novel ZnO piezoelectric micro cantilever energy scavenger: Fabrication and characterisation. Sens Bio-Sens Res 9:45–52CrossRefGoogle Scholar
  30. 30.
    Kalpana VN, Rajeswari VD (2018) A review on green synthesis, biomedical applications, and toxicity studies of ZnO NPs. Bioinorg Chem Appl 1:1–12CrossRefGoogle Scholar
  31. 31.
    Morsella M, Alessandro N, Lanterna AE, Scianno JC (2016) Improving the sunscreen properties of TiO2 through an understanding of its catalytic properties. ACS Omega 3:464–469CrossRefGoogle Scholar
  32. 32.
    Aneesh PM, Vanaja KA, Jayaraj MK(2007) Synthesis of ZnO nanoparticles by hydrothermal method. Proc SPIE 6639:66390J-1-66390J-9Google Scholar
  33. 33.
    Kandpal ND, Sah N, Loshali R, Joshi R, Prasad J (2014) Co-precipitation method of synthesis and characterization of iron oxide nanoparticles. JSIR 73:87–90Google Scholar
  34. 34.
    Sharma A, Karn RK, Pandiyan SK (2014) Synthesis of TiO2 nanoparticles by sol–gel method and their characterization. J Basic Appl Eng Res 1:1–5Google Scholar
  35. 35.
    Saxena AK (2014) A method for the preparation of the cisBis(Glycinato)Copper(II) monohydrate complex in the solid state. Synth React Inorg Met-Org Chem 28:1653–1663CrossRefGoogle Scholar
  36. 36.
    Cataldo F (1996) On the polymerization of P-phenylenediamine. Eur Pol J 32:43–50CrossRefGoogle Scholar
  37. 37.
    Yavuz AG, Gok A (2007) Preparation of TiO2/PANI composites in the presence of surfactants and investigation of electrical properties. Synth Met 157:235–242CrossRefGoogle Scholar
  38. 38.
    Deivanayaki S, Ponnuswamy V, Jayamurugan P, Ashokan S (2012) The structure and properties of polypyrrole/titanium dioxide nanospheres of various dopant percentages by chemical oxidation method. Elixir 49:10182–10185Google Scholar
  39. 39.
    Shanthi ASJ (2014) Synthesis and characterization of poly(p-phenylenediamine) in the presence of sodium dodecyl sulfate. R J Chem Sci 4:60–67Google Scholar
  40. 40.
    Bylander EG (1978) Surface effects on the low-energy cathodoluminescence of zinc oxide. J Appl Phys 49:1188–1198CrossRefGoogle Scholar
  41. 41.
    Deepa J, Shanthi J (2016) Synthesis, characterization and fluorescence applications of conducting poly O-phenylenediamine and its ZnO nanocomposites. Int J Sci Res Method 43:522–535Google Scholar
  42. 42.
    Ahmed F, Kumar S, Arshi N (2016) Preparation and characterizations of polyaniline (PANI)/ZnO nanocomposites film using solution casting method. Thin Solid Films 519:8375–8378CrossRefGoogle Scholar
  43. 43.
    Deivanayaki S, Ponnuswamy V, Mariappan R (2012) Synthesis and characterization of polypyrrole/TiO2 composites by chemical oxidative method. Optik 124:1089–1091CrossRefGoogle Scholar
  44. 44.
    Anbarasan R, Sangeeth V, Saravanan M, Rajkumar R, Anandhaalaguraja M, Dhanalakshmi V (2011) Effect of substituents and dopants on the structure-property relationship of poly(aniline)—a comparative study. J Macromol Sci B 50:704–719CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryNational Institute of Technology NagalandChumukedima, DimapurIndia

Personalised recommendations