Fabrication of microcomposites based on silk sericin and monetite for bone tissue engineering

  • S. Weslen VedakumariEmail author
  • R. Jayalakshmi
  • C. G. Sanjayan
  • B. Jayavardhini
  • K. Arya
  • R. Murugesan
Original Paper


In the present study, silk sericin–monetite microcomposites (SS–MM) were prepared using a simple and cost-effective method. Hemolytic assay was performed to determine the blood compatibility of SS–MM. MTT assay was carried out using MG-63 osteoblasts, to determine the cytocompatibility and proliferative efficacy of SS–MM. Alkaline phosphatase activity was studied to examine the osteogenic potency of the prepared microcomposites. The results obtained showed that the SS–MM can be effectively used as a bone graft for tissue engineering applications.


Biomaterials Sericin Monetite Composite materials Osteoblast Bone graft 



Tissue engineering


Silk sericin




Silk sericin–monetite microcomposites


Scanning electron microscopy


Fourier transform infrared


X-ray diffraction


Red blood cells


Alkaline phosphatase


(3-(4,5-Dimethylazol-2-yl)-2,5-diphenyl-tetrazolium bromide)



The authors greatly acknowledge the financial support received from the Chettinad Academy of Research and Education (CARE Fund) (Grant No. 2015-16) for carrying out the research work.


  1. 1.
    El-Rashidy AA, Roether JA, Harhaus L, Kneser U, Boccaccini AR (2017) Regenerating bone with bioactive glass scaffolds: a review of in vivo studies in bone defect models. Acta Biomater 62:1–28CrossRefGoogle Scholar
  2. 2.
    Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (2012) Biomaterials science: an introduction to materials in medicine, 3rd edn. Academic Press, LondonGoogle Scholar
  3. 3.
    Bao C, Teo E, Chong M, Liu Y, Choolani M, Chan J (2013) Advances in bone tissue engineering. Regen Med Tissue Eng 599–614Google Scholar
  4. 4.
    Rao SH, Harini B, Shadamarshan RPK, Balagangadharan K, Selvamurugan N (2018) Natural and synthetic polymers/bioceramics/bioactive compounds-mediated cell signaling in bone tissue engineering. Int J Biol Macromol 110:88–96CrossRefGoogle Scholar
  5. 5.
    Zhang ML, Cheng J, Xiao YC, Yin RF, Feng X (2017) Raloxifene microsphere-embedded collagen/chitosan/β-tricalcium phosphate scaffold for effective bone tissue engineering. Int J Pharm 518:80–85CrossRefGoogle Scholar
  6. 6.
    Vedakumari WS, Priya VM, Sastry TP (2014) Deposition of superparamagnetic nanohydroxyapatite on iron-fibrin substrates: preparation, characterization, cytocompatibility and bioactivity studies. Colloids Surf B Biointerfaces 120:208–214CrossRefGoogle Scholar
  7. 7.
    Ortega-Oller I, Padial-Molina M, Galindo-Moreno P, O’Valle F, Jódar-Reyes AB, Peula-García JM (2015) Bone regeneration from PLGA micro-nanoparticles. Biomed Res Int 2015:415289CrossRefGoogle Scholar
  8. 8.
    Nishad KV, Sureshbabu S, Komath M, Unnikrishnan G (2017) Synthesis and characterization of low dimensional bioactive monetite by solvent exchange method. Mater Lett 209:19–22CrossRefGoogle Scholar
  9. 9.
    Martínez-Mora C, Mrowiec A, García-Vizcaíno EM, Alcaraz A, Cenis JL, Nicolás FJ (2012) Fibroin and sericin from bombyx mori silk stimulate cell migration through upregulation and phosphorylation of c-Jun. PLoS ONE 7(7):e42271CrossRefGoogle Scholar
  10. 10.
    Aramwit P, Bang N, Ratanavaraporn J, Ekgasit S (2014) Green synthesis of silk sericin-capped silver nanoparticles and their potent anti-bacterial activity. Nanoscale Res Lett 9:79CrossRefGoogle Scholar
  11. 11.
    Kundu SC, Dash BC, Dash R, Kaplan DL (2008) Natural protective glue protein, sericin bioengineered by silkworms: potential for biomedical and biotechnological applications. Prog Polym Sci 33:998–1012CrossRefGoogle Scholar
  12. 12.
    Padol AR, Jayakumar K, Mohan K, Manochaya S (2012) Natural biomaterial silk and silk proteins: applications in tissue repair. Int J Mater Biomater Appl 2:19–24Google Scholar
  13. 13.
    Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, Lu H, Richmond J, Kaplan DL (2012) Silk-based biomaterials. Biomaterials 24:401–416CrossRefGoogle Scholar
  14. 14.
    Wu JH, Wang Z, Xu SY (2007) Preparation and characterization of sericin powder extracted from silk industry wastewater. Food Chem 103:1255–1262CrossRefGoogle Scholar
  15. 15.
    Guo W, Deng L, Yu J, Chen Z, Woo Y, Liu H, Li T, Lin T, Chen H, Zhao M, Zhang L, Li G, Hu Y (2018) Sericin nanomicelles with enhanced cellular uptake and pH-triggered release of doxorubicin reverse cancer drug resistance. Drug Deliv 25:1103–1116CrossRefGoogle Scholar
  16. 16.
    Kapoor S, Kundu SC (2016) Silk protein-based hydrogels: promising advanced materials for biomedical applications. Acta Biomater 31:17–32CrossRefGoogle Scholar
  17. 17.
    Patel RJ, Modasiya MK (2011) Sericin: pharmaceutical applications. Int J Res Pharm Biomed Sci 2:913–917Google Scholar
  18. 18.
    Kunz ReginaInês, Brancalhão RoseMeireCosta, de Fátima Lucinéia, Ribeiro Chasko, Natali MariaRaquelMarçal (2016) Silkworm sericin: properties and biomedical applications. Biomed Res Int 2016:8175701CrossRefGoogle Scholar
  19. 19.
    Klammert U, Reuther T, Jahn C, Kraski B, Kübler AC, Gbureck U (2009) Cytocompatibility of brushite and monetite cell culture scaffolds made by three-dimensional powder printing. Acta Biomater 5:727–734CrossRefGoogle Scholar
  20. 20.
    Cama G, Gharibi B, Knowles JC, Romeed S, DiSilvio L, Deb S (2014) Structural changes and biological responsiveness of an injectable and mouldable monetite bone graft generated by a facile synthetic method. J R Soc Interface 11:20140727CrossRefGoogle Scholar
  21. 21.
    Vereecke G, Lemaitre J (1990) Calculation of the solubility diagram in the system Ca(OH2–H3PO4–KOH–HNO3–CO2–H2O). J Cryst Growth 104:820–832CrossRefGoogle Scholar
  22. 22.
    Ruan Q, Liberman D, Zhang Y, Ren D, Zhang Y, Nutt S, Moradian-Oldak J (2016) Assembly of layered monetite–chitosan nanocomposite and its transition to organized hydroxyapatite. ACS Biomater Sci Eng 2:1049–1058CrossRefGoogle Scholar
  23. 23.
    Tamimi F, Sheikh Z, Barralet J (2012) Dicalcium phosphate cements: brushite and monetite. Acta Biomater 8:474–487CrossRefGoogle Scholar
  24. 24.
    Gaihre B, Jayasuriya AC (2016) Fabrication and characterization of carboxymethyl cellulose novel microparticles for bone tissue engineering. Mater Sci Eng C Mater Biol Appl 69:733–743CrossRefGoogle Scholar
  25. 25.
    Salimi E, Javadpour J (2012) Synthesis and characterization of nanoporous monetite which can be applicable for drug carrier. J Nanomater 2012:5CrossRefGoogle Scholar
  26. 26.
    Martínez DianaCarolinaCastrillón, Zuluaga CarolinaLondoño, Osorio AdrianaRestrepo, Álvarez-López Catalina (2017) Characterization of sericin obtained from cocoons and silk yarns. Procedia Eng 200:377–383CrossRefGoogle Scholar
  27. 27.
    Document ASTM (2005) Standard practice for assessment of hemolytic properties of materials designation: F 756-00. Annu Book ASTM Stand, pp 309–313Google Scholar
  28. 28.
    Liu Y, Cai D, Yang J, Wang Y, Zhang X, Yin S (2014) In vitro hemocompatibility evaluation of poly (4-hydroxybutyrate) scaffold. Int J Clin Exp Med 7:1233–1243Google Scholar
  29. 29.
    Terada S, Nishimura T, Sasaki M, Yamada H, Miki M (2002) Sericin, a protein derived from silkworms, accelerates the proliferation of several mammalian cell lines including a hybridoma. Cytotechnology 40:3–12CrossRefGoogle Scholar
  30. 30.
    Tsubouchi K, Igarashi Y, Takasu Y, Yamada H (2005) Sericin enhances attachment of cultured human skin fibroblasts. Biosci Biotechnol Biochem 69:403–405CrossRefGoogle Scholar
  31. 31.
    Zhang F, Zhang Z, Zhu X, Kang ET, Neoh KG (2008) Silk-functionalized titanium surfaces for enhancing osteoblast functions and reducing bacterial adhesion. Biomaterials 29:4751–4759CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • S. Weslen Vedakumari
    • 1
    Email author
  • R. Jayalakshmi
    • 1
  • C. G. Sanjayan
    • 1
  • B. Jayavardhini
    • 1
  • K. Arya
    • 1
  • R. Murugesan
    • 1
  1. 1.Faculty of Allied Health SciencesChettinad Academy of Research and EducationKelambakkam, ChennaiIndia

Personalised recommendations