Composites of polyethylene and layered cobalt hydroxide salts as potential ultraviolet radiation absorbers

  • Neffer Arvey Gomez Gomez
  • Swami Arêa Maruyama
  • Andreas Leuteritz
  • Fernando WypychEmail author
Original Paper


This paper describes the synthesis of cobalt hydroxide nitrate (CoHN) and cobalt hydroxide p-aminobenzoate (CoHAB), which were dispersed in polyethylene with the objective of protecting the polymer from ultraviolet (UV) radiation degradation. First, CoHN was synthesized by urea hydrolysis in the presence of Co(II) nitrate and the intercalation of p-aminobenzoate into CoHAB was performed under hydrothermal alkaline conditions. The structure and thermal stability of the CoHN and CoHAB were characterized by several instrumental techniques. Results indicated that both fillers were dispersed in polyethylene and absorb radiation in the whole UV range, modifying the behavior of the polymer degradation under artificial weathering conditions.

Graphical abstract


Intercalation Layered hydroxide salts Composites p-Aminobenzoate Polyethylene Ultraviolet radiation Weathering 



We thank CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), CNPq (Conselho Nacional de Desenvolvimento Cientifico e Tecnologico-Proc. 303846/2014-3 and 400117/2016-9) and FINEP (Financiadora de Estudos e Projetos) for financial support. N.A.G.G. and S.A.M. thank CAPES and CNPq for the PhD and postdoctoral scholarships, respectively.


  1. 1.
    Lewis TJ (2002) Polyethylene under electrical stress. IEEE Trans Dielectr Electr Insul 9(5):717–729. CrossRefGoogle Scholar
  2. 2.
    Purohit PJ, Wang D-Y, Emmerling F, Thünemann AF, Heinrich G, Schönhals A (2012) Arrangement of layered double hydroxide in a polyethylene matrix studied by a combination of complementary methods. Polymer 53(11):2245–2254. CrossRefGoogle Scholar
  3. 3.
    Hartmann LC, Linero LE, Cunha G, Piazza F, Munaro M (2008) Development of a new methodology for evaluating equipments used in spacer cable systems under multi stress conditions. Espaço e energia 9:1–8Google Scholar
  4. 4.
    Yousif E, Haddad R (2013) Photodegradation and photostabilization of polymers, especially polystyrene: review. Springerplus 2:398. CrossRefGoogle Scholar
  5. 5.
    Sheela T, Bhajantri RF, Ravindrachary V, Rathod SG, Pujari PK, Poojary B, Somashekar R (2014) Effect of UV irradiation on optical, mechanical and microstructural properties of PVA/NaAlg blends. Radiat Phys Chem 103:45–52. CrossRefGoogle Scholar
  6. 6.
    Kamweru PK, Ndiritu FG, Kinyanjui T, Muthui ZW, Ngumbu RG, Odhiambo PM (2014) UV absorption and dynamic mechanical analysis of polyethylene films. Int J Phys Sci 9(24):545–555. Google Scholar
  7. 7.
    Cursino ACT, Gardolinski JEFC, Wypych F (2010) Intercalation of anionic organic ultraviolet ray absorbers into layered zinc hydroxide nitrate. J Colloid Interface Sci 347(1):49–55. CrossRefGoogle Scholar
  8. 8.
    Usuki A, Kawasumi M, Kojima Y, Okada A, Kurauchi T, Kamigaito O (1993) Swelling behavior of montmorillonite cation exchanged for ω-amino acids by Ɛ-caprolactam. J Mater Res 8(5):1174–1178. CrossRefGoogle Scholar
  9. 9.
    Lv Qun-Chen, Ying L, Zhi-kui Z, Hui-Jun W, Fu-An H, Kwok-Ho L (2018) Preparation and dielectric properties of novel composites based on oxidized styrene-butadiene styrene copolymer and polyaniline modified exfoliated graphite nanoplates. Appl Surf Sci 441:945–954. CrossRefGoogle Scholar
  10. 10.
    Jun-Jun C, Ying L, Xu-Min Z, Fu-An H, Kwok-Ho L (2018) Enhancement in electroactive crystalline phase and dielectric performance of novel PEG-graphene/PVDF composites. Appl Surf Sci 448:320–330. CrossRefGoogle Scholar
  11. 11.
    Bo L, Li-Hong P, Dong-Liang S, Hua-Kun H, Fu-An H, Kwok-Ho L, Hui-Jun W (2019) Preparation and characterization of composites based on poly(vinylidene fluoride-co-chlorotrifluoroethylene) and carbon nanofillers: a comparative study of exfoliated graphite nanoplates and multi-walled carbon nanotubes. J Mater Sci 54(3):2256–2270CrossRefGoogle Scholar
  12. 12.
    Fu-An H, Kai L, Dong-Liang S, Hui-Jun W, Hua-Kun H, Jun-Jun C, Fang C, Kwok-Ho L (2016) Preparation of organosilicate/PVDF composites with enhanced piezoelectricity and pyroelectricity by stretching. Compos Sci Technol 137:138–147. CrossRefGoogle Scholar
  13. 13.
    Wang Q, O´Hare D (2012) Recent Advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. ACS Chem Rev 112(7):4124–4155. CrossRefGoogle Scholar
  14. 14.
    Basu D, Das A, Stöckelhuber KW, Wagenknecht U, Heinrich G (2014) Advances in layered double hydroxide (LDH)-based elastomer composites. Prog Polym Sci 39(3):594–626. CrossRefGoogle Scholar
  15. 15.
    Roto R, Tahir I, Mustofa M (2007) Zn–Al Layered double hydroxide as host material for sunscreen compound of p-aminobenzoic acid. Indones J Chem 7(1):1–4. CrossRefGoogle Scholar
  16. 16.
    Arizaga GGC, Satyanarayana KG, Wypych F (2007) Layered hydroxide salts: synthesis, properties and potential applications. Solid State Ionics 178(15–18):1143–1162. CrossRefGoogle Scholar
  17. 17.
    Zimmermann A, Jaerger S, Zawadzki SF, Wypych F (2013) Synthetic zinc layered hydroxide salts intercalated with anionic azo dyes as fillers into high-density polyethylene composites: first insights. J Polym Res 20(224):1–11. Google Scholar
  18. 18.
    Huang L, Jiang J, Ai L (2017) Interlayer expansion of layered cobalt hydroxide nanobelts to highly improve oxygen evolution electrocatalysis. ACS Appl Mater Interfaces 9(8):7059–7067. CrossRefGoogle Scholar
  19. 19.
    Perioli L, Ambrogi V, Bertini B, Ricci M, Nocchetti M, Latterini L, Rossi C (2006) Anionic clays for sunscreen agent safe use: photoprotection, photostability and prevention of their skin penetration. Eur J Pharm Biopharm 62(2):185–193. CrossRefGoogle Scholar
  20. 20.
    Li Y, Tang L-P, Zhou W, Wang X-R (2016) Fabrication of intercalated p-aminobenzoic acid into Zn–Ti layered double hydroxide and its application as UV absorbent. Chin Chem Lett 27(9):1495–1499. CrossRefGoogle Scholar
  21. 21.
    Rajamathi M, Kamath PV (2001) Urea hydrolysis of cobalt (II) nitrate melts: synthesis of novel hydroxides and hydroxynitrates. Int J Inorg Mater 3(7):901–906. CrossRefGoogle Scholar
  22. 22.
    Kloprogge JT, Wharton D, Hickey L, Frost RL (2002) Infrared and Raman study of interlayer anions CO3−2, NO−3, SO2−4 and ClO−4 in Mg/Al hydrotalcite. Am Miner 87(5–6):623–629. CrossRefGoogle Scholar
  23. 23.
    Li D, Qian L, Feng Y, Feng J, Tang P, Yang L (2014) Co-intercalation of acid red 337 and a UV absorbent into layered double hydroxides: enhancement of photostability. ACS Appl Mater Interf 6(23):20603–20611. CrossRefGoogle Scholar
  24. 24.
    Nakamoto K (2009) Infrared and Raman spectra of inorganic and coordination Compounds Part A. Wiley, New YorkGoogle Scholar
  25. 25.
    Xu R, Zeng HC (2003) Mechanistic investigation on salt-mediated formation of free-standing Co3O4 nanocubes at 95°C. J Phys Chem B 107(4):926–930. CrossRefGoogle Scholar
  26. 26.
    Frost RL, Palmer SJ, Grand L-M (2010) Synthesis and Raman spectroscopy of indium-based hydrotalcites of formula Mg6In2(CO3)(OH)16.4H2O. J Raman Spectrosc 41(12):1797–1802. CrossRefGoogle Scholar
  27. 27.
    Ramesh TN, Madhu TL (2015) Thermal decomposition studies of layered metal hydroxynitrates (metal: cu, Zn, Cu/Co, and Zn/Co). Int J Inorg Chem. 2015:536470. Google Scholar
  28. 28.
    Mills SJ, Christy AG, Génin J-MR, Kameda T, Colombo F (2012) Nomenclature of the hydrotalcite supergroup: natural layered double hydroxides. Miner Mag 76(5):1289–1336. CrossRefGoogle Scholar
  29. 29.
    Krivovichev SV, Yakovenchuk VN, Zhitova ES, Zolotarev AA, Pakhomovsky YA, Ivanyuk GY (2010) Crystal chemistry of natural layered double hydroxides. I. Quintinite-2H-3c from the Kovdor alkaline massif, Kola peninsula, Russia. Miner Mag 74(5):821–832. CrossRefGoogle Scholar
  30. 30.
    Zhitova ES, Yakovenchuk VN, Krivovichev SV, Zolotarev AA, Pakhomovsky YA, Ivanyuk GY (2010) Crystal chemistry of natural layered double hydroxides. 3. The crystal structure of Mg, Al- disordered quintinite-2H. Miner Mag 74(5):841–848. CrossRefGoogle Scholar
  31. 31.
    Maruyama SA, Tavares SR, Leitão AA, Wypych F (2016) Intercalation of indigo carmine anions into zinc hydroxide salt: a novel alternative blue pigment. Dyes Pigments 128:158–164. CrossRefGoogle Scholar
  32. 32.
    Ojha N, Pradhan N, Singh S, Barla A, Shrivastava A, Khatua P, Rai V, Bose S (2017) Evaluation of HDPE and LDPE degradation by fungus, implemented by statistical optimization. Sci Rep 7:39515. CrossRefGoogle Scholar
  33. 33.
    Araújo SV, Rocha BS, Luna FMT, Rola EM, Azevedo DCS, Cavalcante CL (2011) FTIR assessment of the oxidation process of castor oil FAME submitted to petroOXY and Rancimat methods. Fuel Process Technol 92(5):1152–1155. CrossRefGoogle Scholar
  34. 34.
    Montazer Z, Habibi-Najafi MB, Mohebbi M, Oromiehei A (2018) Microbial degradation of UV-pretreated low-density polyethylene films by novel polyethylene-degrading bacteria isolated from plastic-dump soil. J Polym Environ 26:3613–3625. CrossRefGoogle Scholar
  35. 35.
    Sheikh N, Akhavan A, Naimian F, Khoylou F, Hassanpour S, Sohrabpour M (2006) Formulation of a photosensitized polyethylene film; its structure and property variation under the weathering conditions of Tehran. J Polym Environ 14(1):103–109. CrossRefGoogle Scholar
  36. 36.
    Roy PK, Hakkarainen M, Albertsson A-C (2013) Exploring the biodegradation potential of polyethylene through a simple chemical test method. J Polym Environ 22(1):69–77. CrossRefGoogle Scholar
  37. 37.
    Roy PK, Surekha P, Rajagopal C (2011) Surface oxidation of low-density polyethylene films to improve their susceptibility toward environmental degradation. J Appl Polym Sci 122:2765–2773. CrossRefGoogle Scholar
  38. 38.
    Andersson T, Stalbom B, Wesslen B (2004) Degradation of polyethylene during extrusion. II. Degradation of low-density polyethylene, linear low density polyethylene, and high-density polyethylene in film extrusion. J Appl Polym Sci 91:1525–1537. CrossRefGoogle Scholar
  39. 39.
    Kim M, Pometto AL III, Johnson KE, Fratzke AR (1994) Degradation studies of novel degradable starch-polyethylene plastics containing oxidized polyethylene and prooxidant. J Environ Polym Degrad 2(1):27–38CrossRefGoogle Scholar
  40. 40.
    Albertsson A-C, Andersson SO, Karlsson S (1987) The mechanism of biodegradation of polyethylene. Polym Degrad Stab 18:73–87. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Quı́mica, Centro de Pesquisas em Quı́mica Aplicada, CEPESQUniversidade Federal do Paraná, UFPRCuritibaBrazil
  2. 2.Leibniz-Institut für Polymerforschung Dresden e.V.DresdenGermany

Personalised recommendations