Advertisement

Investigating mechanical properties of leather treated with Aloe barbadensis Miller and Carrageenan using existing theoretical models

  • Kallen Mulilo NalyanyaEmail author
  • Ronald K. Rop
  • Arthur Onyuka
  • Zephaniah Birech
  • Alvin Sasia
Original Paper

Abstract

Several studies have alluded to the possibility and importance of utilizing Aloe barbadensis Miller and Carrageenan to increase leather functionalities without impacting on the environment negatively and retaining the mechanical performance of the final leather. In order to understand the actual effect of A. barbadensis Miller and Carrageenan on the mechanical effect, there is need to understand the mechanism of reinforcement or weakening. This will enhance the scientific understanding of the processes of deformation and mechanical failure of the leather materials, and the connections between the structure, processing and their underlying mechanisms. This study presents the results of using the existing empirical models and semi-empirical equations to both predict the strength properties of leather treated with A. barbadensis Miller mixed with Carrageenan and determine their mechanism of strengthening/weakening in the leather matrix. Prediction using the existing empirical models and equations shows reasonable agreement with experimental data and can be used to explain the strengthening/weakening mechanism. Results clearly indicate that adhesion is strong in fatliquored leather, and it significantly influences the strength properties. Fatliquoring agents act as coupling agents that improve wetting and hence adhesion. The study recommends at most 3.784% of the A. barbadensis Miller and Carrageenan by weight of crust and incorporation be done after fatliquoring process. Although parameters concerning leather matrix irregularities and particle sizes were not accounted for, the study suggests any processes that can increase surface free energy of the fillers to increase the work of adhesion at the interface such as filler sulphiting and surfactants.

Keywords

Crust leather Adhesion Mechanical properties Theoretical models and relations Aloe barbadensis Miller and Carrageenan Reinforcement theory 

Notes

References

  1. 1.
    Wenger MPE, Bozec L, Horton AM, Mesquida P (2007) Mechanical properties of collagen fibrils. Biophys J 93:1255–1263CrossRefGoogle Scholar
  2. 2.
    Nalyanya KM, Rop RK, Onyuka A, Kamau J (2015) Tensile properties of Kenyan Indigenous Boran bovine Pickled and Tanned hide. Int J Sci Res 4:2149–2154Google Scholar
  3. 3.
    Nalyanya KM, Rop RK, Onyuka A, Migunde PO, Ngumbu RG (2016) Thermal and mechanical analysis of pickled and tanned cowhide: effect of solar radiations. J Appl Polym Sci 133:43208.  https://doi.org/10.1002/app.43208 CrossRefGoogle Scholar
  4. 4.
    Bitlisli B, Zengin A, Yeldiyar G, Kairanbekov G, Kucukakin E (2013) Upper leathers in shoe manufacturing. J Ind Technol Eng 2:37–41Google Scholar
  5. 5.
    Wells HC, Edmonds RL, Kirby N, Hawley A, Mudie ST, Haverkamp RG (2013) Collagen fibril diameter and leather strength. J Agric Food Chem 61:11524–11531CrossRefGoogle Scholar
  6. 6.
    Litke KS, Widdemer JD (2003) Aloe vera processed leather and leather gloves, garments, shoes and sandals made from Aloe vera processed leather and a process for making Aloe vera processed leather. US Patent No: 2003/0217416 A1Google Scholar
  7. 7.
    Bitlisli BO, Yasa I, Aslan A, Cadırcı BH, Basaran B (2010) Physical and antimicrobial characteristics of Aloe vera treated split suede leather. J Am Leather Chem Assoc 105:34–40Google Scholar
  8. 8.
    Hamman JH (2008) Composition and applications of Aloe vera leaf gel. Molecules 13:1599–1616CrossRefGoogle Scholar
  9. 9.
    Hsueh CH (1987) Effects of aspect ratios of ellipsoidal inclusions on elastic stress transfer of ceramic composites. J Am Ceram Soc 72:344–347CrossRefGoogle Scholar
  10. 10.
    Reynaud E, Jouen T, Gauthier C, Vigier G, Varlet J (2001) Nanofillers in polymeric matrix: a study on silica reinforced PA6. Polymer 42:8759–8768CrossRefGoogle Scholar
  11. 11.
    Fu SY, Feng XQ, Lauke B, Mai YW (2008) Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. Composites B 39:933–961CrossRefGoogle Scholar
  12. 12.
    Sumita M, Shizuma T, Miyasaka K, Ishikawa K (1983) Effect of reducible properties of temperature, rate of strain, and filler content on the tensile yield stress of nylon 6 composites filled with ultrafine particles. J Macromol Sci B 22:601–618CrossRefGoogle Scholar
  13. 13.
    Kalaprasad G, Joseph K, Thomas S, Pavithran C (1997) Theoretical modelling of tensile properties of short sisal fibre-reinforced low-density polyethylene composites. J Mater Sci 32:4261–4267CrossRefGoogle Scholar
  14. 14.
    Lau KT, Gu C, Hui D (2006) A critical review on nanotube and nanotube/nanoclay related polymer composite materials. Composite B 37:425–436CrossRefGoogle Scholar
  15. 15.
    Martone A, Formicola C, Giordano M, Zarrelli M (2010) Reinforcement efficiency of multi-walled carbon nanotube/epoxy nano composites. Compos Sci Technol 70:1154–1160.  https://doi.org/10.1016/j.compscitech.2010.03.001 CrossRefGoogle Scholar
  16. 16.
    Dekkers MEJ, Heikens D (1983) The effect of interfacial adhesion on the tensile behavior of polystyrene–glass-bead composites. J Appl Polym Sci 28:3809–3815CrossRefGoogle Scholar
  17. 17.
    Moloney AC, Kausch HH, Kaiser T, Beer HR (1987) A review: parameters determining the strength and toughness of particulate filled epoxide resins. J Mater Sci 22:381–393CrossRefGoogle Scholar
  18. 18.
    Hu Y, Jang I, Sinnott SB (2003) Modification of carbon nanotube-polystyrene matrix composites through polyatomic-ion beam deposition: predictions from molecular dynamics simulations. Compos Sci Technol 63:1663–1669CrossRefGoogle Scholar
  19. 19.
    Song YS, Youn JR (2005) Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites. Carbon 43:1378–1385CrossRefGoogle Scholar
  20. 20.
    Ervina J, Mariatti M, Hamdan S (2016) Effect of filler loading on the tensile properties of multi-walled carbon nanotube and graphene nano powder filled epoxy composites. Procedia Chem 19:897–905CrossRefGoogle Scholar
  21. 21.
    Einstein A (1956) Investigation on theory of Brownian motion. Dover, New YorkGoogle Scholar
  22. 22.
    Islam S, Masoodi R, Rostami H (2013) The effect of nanoparticles percentage on mechanical behavior of silica-epoxy nanocomposites. J Nanosci 2013:1–10CrossRefGoogle Scholar
  23. 23.
    Guth E (1945) Theory of filler reinforcement. J Appl Phys 16:20–25CrossRefGoogle Scholar
  24. 24.
    Danusso F, Tieghi G (1986) Strength versus composition of rigid matrix particulate composites. Polymer 27:1385–1390CrossRefGoogle Scholar
  25. 25.
    Levita G, Marchetti A, Lazzeri B (1989) A fracture of ultrafine calcium carbonate/polypropylene composites. Polym Compos 10:39–43CrossRefGoogle Scholar
  26. 26.
    Nielsen LE (1966) Simple theory of stress–strain properties of filled polymers. J Appl Polym Sci 10:97–103CrossRefGoogle Scholar
  27. 27.
    Piggott MR, Leidner J (1974) Misconceptions about filled polymers. J Appl Polym Sci 18:1619–1623CrossRefGoogle Scholar
  28. 28.
    Guptha AK, Purwar SN (1984) Melt rheological properties of polypropylene/SEBS (styrene–ethylene butylene–styrene block copolymer) blends. J Appl Polym Sci 29:3513CrossRefGoogle Scholar
  29. 29.
    Nicolais NL, Narkis NM (1971) Stress-strain behavior of styrene-acrylonitrile/glass bead composites in the glassy region. Polym Eng Sci 11:194–199CrossRefGoogle Scholar
  30. 30.
    Leidner J, Woodhams RT (1974) Strength of polymeric composites containing spherical fillers. J Appl Polym Sci 18:1639–1654CrossRefGoogle Scholar
  31. 31.
    Bigg DM (1987) Mechanical properties of particulate filled polymers. Polym Compos 8:115–122CrossRefGoogle Scholar
  32. 32.
    Pukanszky B, Turcsanyi B, Tudos F (1988) Effect of interfacial interaction on the tensile yield stress of polymer composites. In: Ishida H (ed) Interfaces in polymer, ceramic and metal matrix composites. Elsevier, Amsterdam, pp 467–477Google Scholar
  33. 33.
    Turcsanyi B, Pukanszky B, Tudos F (1988) Composition dependence of tensile yield stress in filled polymers. J Mater Sci Lett 7:160–162CrossRefGoogle Scholar
  34. 34.
    Svab I, Musil V, Leskovac M (2005) The adhesion phenomena in polypropylene/wollastonite composites. Acta Chim Slov 52:264–271Google Scholar
  35. 35.
    Liang JZ, Li RKY (1933) Prediction of tensile yield strength of rigid inorganic particulate filled thermoplastic composites. J Mater Proc Technol 83:127–130CrossRefGoogle Scholar
  36. 36.
    Goodier JN (1933) Concentration of stress around spherical and cylindrical inclusions and flaws. J Appl Mech 55:A39Google Scholar
  37. 37.
    Vollenberg PHT, Heikens D (1989) Particle size dependence of the Young’s modulus of filled polymers: 1. Preliminary experiments. Polymer 30:1656–1662CrossRefGoogle Scholar
  38. 38.
    Pukanszky B (1990) Influence of interface interaction on the ultimate tensile properties of polymer composites. Composites 21:255–262CrossRefGoogle Scholar
  39. 39.
    Buggy M, Bradley G, Sullivan A (2005) Polymer–filler interactions in kaolin/nylon 6, 6 composites containing a silane coupling agent. Compos Part A Appl Sci Manuf 36:437–442CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Kallen Mulilo Nalyanya
    • 1
    Email author
  • Ronald K. Rop
    • 1
  • Arthur Onyuka
    • 2
  • Zephaniah Birech
    • 3
  • Alvin Sasia
    • 2
  1. 1.Department of Physics, Faculty of ScienceEgerton UniversityEgertonKenya
  2. 2.Kenya Industrial Research and Development InstituteNairobiKenya
  3. 3.Department of Physics, School of Biological and Physical SciencesUniversity of NairobiNairobiKenya

Personalised recommendations