Ultra-fast, economical and room temperature operating ammonia sensor based on polyaniline/iron oxide hybrid nanocomposites

  • V. V. ChabukswarEmail author
  • M. A. Bora
  • P. B. Adhav
  • B. B. Diwate
  • S. Salunke-Gawali
Original Paper


The present work reports a facile, cost-effective, template-free hydrothermal preparative strategy for the synthesis of iron oxides, i.e. α-Fe2O3 (haematite) and Fe3O4 (magnetite) nanoparticles. The polyaniline (PANI) and their iron oxide hybrid nanocomposites (PANI/IO) were prepared by in situ chemical oxidative polymerization method. These PANI/IO nanocomposites were characterized by UV-DRS, FTIR, XRD, SEM techniques and tested for their ammonia sensing properties. The newly synthesized PANI/IO nanocomposites were highly sensitive towards a wide range of concentration of hazardous ammonia (1–400 ppm) at room temperature and possess excellent shelf life. The experimental results revealed that PANI/IO sensor shows ultra-fast response (13–26 s) and recovery (14–25 s) time for 1–100 ppm concentration of ammonia, and thereafter, for higher concentrations (up to 400 ppm) it practically remains constant. The responses of PANI/IO sensors were reproducible over entire range of ammonia concentrations for 10 cycles. The cost-effectiveness, operation simplicity, facile method of synthesis, ultra-fast response and recovery with excellent reproducibility make PANI/IO ammonia sensor commercially attractive than the ammonia sensors reported in the literature.


Polyaniline Conducting polymers Nanocomposite NH3 sensors 



The authors are thankful to the UGC and Savitribai Phule Pune University, Pune, India, for technical and financial support. They are also thankful to the N. Wadia College, Pune and BJS’S ASC College, Wagholi, Pune, India, for providing laboratory facilities.


  1. 1.
    Narasimhan LR, Goodman W, Patel N (2001) Correlation of breath ammonia with blood urea nitrogen and creatinine during hemodialysis. Proc Natl Acad Sci USA 98:4617–4621CrossRefGoogle Scholar
  2. 2.
    Eom KH, Hyun KH, Lin S, Kim J W (2014) The meat freshness monitoring system using the smart RFID tag. Int J Distrib Sens N ID591812:1–9Google Scholar
  3. 3.
    Modi A, Koratkar N, Lass E, Wei B, Ajayan PM (2003) Miniaturized gas ionization sensors using carbon nanotubes. Nature 424:171–174CrossRefGoogle Scholar
  4. 4.
    Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Kohl D (2001) Function and application of gas sensors. Topical review. J Phys D Appl Phys 34:R125CrossRefGoogle Scholar
  5. 5.
    Ranson M, Cox B, Keenan C, Teitelbaum D (2015) The impact of pollution prevention on toxic environmental releases from U.S. manufacturing facilities. Environ Sci Technol 49(21):12951–12957CrossRefGoogle Scholar
  6. 6.
    Liu S, Ponrathnam T, Sun H, Nagarajan R, Kumar J, Gu Z, Kurup P (2010) Detection of explosive vapors by surface acoustic wave sensors containing novel siloxane based coatings. J Macromol Sci A Pure Appl Chem 47:1172–1175CrossRefGoogle Scholar
  7. 7.
    Tiwari A (2007) Gum arabic-graft-polyaniline an electrically active redox biomaterial for sensor applications. J Macromol Sci A Pure Appl Chem 44:735–745CrossRefGoogle Scholar
  8. 8.
    Chabukswar VV, Pethkar S, Athawale AA (2001) Acrylic acid doped polyaniline as an ammonia sensor. Sens Actuators B 77:657–663CrossRefGoogle Scholar
  9. 9.
    Brabec CJ, Sariciftci NS, Hummelen JC (2001) Plastic solar cells. Adv Funct Mater 11:15–26CrossRefGoogle Scholar
  10. 10.
    Athawale AA, Kulkarni MV, Chabukswar VV (2002) Studies on chemically synthesized soluble acrylic acid doped polyaniline. Mater Chem Phys 73:106–110CrossRefGoogle Scholar
  11. 11.
    Nicolas-Debarnot D, Poncin-Epaillard F (2003) Polyaniline as a new sensitive layer for gas sensors. Anal Chim Acta 475:1–15CrossRefGoogle Scholar
  12. 12.
    Das TK, Prusty S (2012) Review on conducting polymers and their applications. Polym Plast Technol Eng 51:1487–1500CrossRefGoogle Scholar
  13. 13.
    Tsumura A, Koezuka H, Ando T (1988) Polythiophene field-effect transistor: its characteristics and operation mechanism. Synth Met 25:11–23CrossRefGoogle Scholar
  14. 14.
    Penza M, Milella E, Musion F, Alba MB, Cassano G, Quirini A (1998) AC and DC measurements on Langmuir-Blodgett polypyrrole films for selective NH3 gas detection. Mater Sci Eng C 5:255–258CrossRefGoogle Scholar
  15. 15.
    Radhakrishnan S, Prakash S, Rao CRK, Vijayan M (2009) Organically soluble bi functional polyaniline–magnetite composites for sensing and super capacitor applications. Electrochem Solid-State Lett 12:A84–A87CrossRefGoogle Scholar
  16. 16.
    Liu A, Bac LH, Kim J-C, Liu L (2012) Preparation and characterization of polyaniline-copper composites by electrical explosion of wire. J Nanosci Nanotechnol 12:6031–6035CrossRefGoogle Scholar
  17. 17.
    Li D, Huang J, Kaner RB (2009) Polyaniline nanofibers: a unique polymer nanostructure for versatile applications. Acc Chem Res 42:135–145CrossRefGoogle Scholar
  18. 18.
    Abu-Thabit NY (2016) Chemical oxidative polymerization of polyaniline: a practical approach for preparation of smart conductive textiles. J Chem Educ 93(9):1606–1611CrossRefGoogle Scholar
  19. 19.
    Cuentas-Gallegos AK, Lira-Cantu M, Casan-Pastor N, Gomez Romero P (2005) Nanocomposite hybrid materials for application in solid-state electrochemical super capacitors. Adv Funct Mater 15:1125–1135CrossRefGoogle Scholar
  20. 20.
    Sen T, Mishra S, Shimpi NG (2016) Synthesis and sensing applications of polyaniline nanocomposites: a review. RSC Adv 6:42196–42222CrossRefGoogle Scholar
  21. 21.
    Solonaru M, Grigoras M (2017) Water-soluble polyaniline/graphene composites as materials for energy storage applications. Express Polym Lett 11:127–139CrossRefGoogle Scholar
  22. 22.
    Mallakpour S, Behranvand V (2016) Polymeric nanoparticles: recent development in synthesis and application. Express Polym Lett 10:895–913CrossRefGoogle Scholar
  23. 23.
    Xu CN, Miura N, Ishida Y, Matuda K, Yamazoe N (2000) Selective detection of NH3 over NO in combustion exhausts by using Au and MoO3 doubly promoted WO3 element. Sens Actuators B 65:163–165CrossRefGoogle Scholar
  24. 24.
    Yogitsoy B, Varis S, Tanyeli C, Akhmedov I, Toppare LA (2007) Soluble conducting polymer of 2,5-di(thiophen-2-yl)-1-p-tolyl-1H-pyrrole and its electro chromic device. Thin Solid Films 515:3898–3904CrossRefGoogle Scholar
  25. 25.
    Agrawalla RK, Meriga V, Paul R, Chakraborty AK, Mitra AK (2016) Solvothermal synthesis of a polyaniline nanocomposite—a prospective biosensor electrode material. Express Polym Lett 10:780–787CrossRefGoogle Scholar
  26. 26.
    Khademian M, Eisazadeh H, Shakeri A, Ghorbani M (2015) Effect of HPC-PANI/SiO2 emulsion nanocomposite in poly (vinyl acetate) for corrosion-resistant coatings. Polym Plast Technol Eng 54:1051–1056CrossRefGoogle Scholar
  27. 27.
    Gizdavic-Nikolaidis MR, Jevremovic MM, Allison MC, Stanisavljev DR, Bowmaker GA, Zujovic ZD (2014) Self-assembly of nanostructures obtained in a microwave-assisted oxidative polymerization of aniline. Express Polym Lett 8:745–755CrossRefGoogle Scholar
  28. 28.
    Sarmento VHV, Schiavetto MG, Hammer P, Benedetti AV, Fugivara CS, Suegama PH, Pulcinelli SH, Santilli CV (2010) Corrosion protection of stainless steel by poly-siloxane hybrid coatings prepared using the sol–gel process. Surf Coat Technol 204:2689–2701CrossRefGoogle Scholar
  29. 29.
    Rahmanzadeh L, Ghorbani M, Jahanshahi M (2014) Synthesis and characterization of Fe3O4@Polyrhodanine nanocomposite with core–shell morphology. Adv Polym Technol 33(S1):21463CrossRefGoogle Scholar
  30. 30.
    Sharma BK, Gupta AK, Khare N, Dhawan S, Gupta H (2009) Synthesis and characterization of polyaniline–ZnO composite and its dielectric behaviour. Synth Met 159:391–395CrossRefGoogle Scholar
  31. 31.
    Xiao Q, Tan X, Ji L, Xue J (2007) Preparation and characterization of polyaniline/nano-Fe3O4 composites via a novel Pickering emulsion route. Synth Met 157:784–791CrossRefGoogle Scholar
  32. 32.
    Sim B, Chae HS, Choi HJ (2015) Fabrication of polyaniline coated iron oxide hybrid particles and their dual stimuli-response under electric and magnetic fields. Express Polym Lett 9:736–743CrossRefGoogle Scholar
  33. 33.
    Li R, Jiang K, Chen S, Lou Z, Huang T, Chen D, Shen G (2017) SnO2/SnS2 nanotubes for flexible room temperature NH3 gas sensors. RSC Adv 7:52503–52509CrossRefGoogle Scholar
  34. 34.
    Bandgar DK, Navale ST, Nalage SR, Mane RS, Stadler FJ, Aswal DK, Gupta SK, Patil VB (2015) Simple and low-temperature polyaniline-based flexible ammonia sensor: a step towards laboratory synthesis to economical device design. J Mater Chem C 3:9461–9468CrossRefGoogle Scholar
  35. 35.
    Tai H, Jiang Y, Xie G, Yu J (2010) Preparation, Characterization and comparative NH3-sensing characteristic studies of PANI/inorganic oxides nanocomposite thin films. J Mater Sci Technol 26(7):605–613CrossRefGoogle Scholar
  36. 36.
    Zhang Z, Wan M (2003) Nano structure of polyaniline composites containing nano-magnet. Nanostruct Synth Met 132:205–221CrossRefGoogle Scholar
  37. 37.
    Das M, Sarkar D (2017) Development of room temperature ethanol sensor from polypyrrole (PPy) embedded in polyvinyl alcohol (PVA) matrix. Polym Bull 75:3109. CrossRefGoogle Scholar
  38. 38.
    Kumar L, Rawal I, Kaur A, Annapoorni S (2017) Flexible room temperature ammonia sensor based on polyaniline. Sens Actuators B 240:408–416CrossRefGoogle Scholar
  39. 39.
    Ghosh R, Nayak A, Santra S, Pradhan D, Guha P (2015) Enhanced ammonia sensing at room temperature with reduced graphene oxide/tin oxide hybrid film. RSC Adv 5:50165–50173CrossRefGoogle Scholar
  40. 40.
    Yadav AA, Kulkarni SB, Lokhande CD (2018) Synthesis and characterization of polypyrrole thin film by MW-CBD method for NH3 gas sensor. Polym Bull 75:4547. CrossRefGoogle Scholar
  41. 41.
    Yoo KP, Kwon KH, Min NK, Lee MJ, Lee CJ (2009) Effects of O2 plasma treatment on NH3 sensing characteristics of multiwall carbon nanotube/polyaniline composite films. Sens Actuators B 143:333–340CrossRefGoogle Scholar
  42. 42.
    Wu Y, Xing S, Jinga S, Zhoua T, Zhao C (2007) Examining the use of Fe3O4 nanoparticles to enhance the NH3 sensitivity of polypyrrole films. Polym Bull 59:227–234CrossRefGoogle Scholar
  43. 43.
    Crowley K, Morrin A, Hernandez A, O’Malley E, Whitten PG, Wallace GG, Smyth MR, Killard S (2008) Fabrication of an ammonia gas sensor using inkjet-printed polyaniline nanoparticles. Talanta 77:710–717CrossRefGoogle Scholar
  44. 44.
    Bhadra S, Singha NK, Khastgir D (2007) Electrochemical synthesis of polyaniline and its comparison with chemically synthesized polyaniline. J Appl Polym Sci 104:1900–1904CrossRefGoogle Scholar
  45. 45.
    Sengupta PP, Kar P, Adhikari B (2009) Influence of dopant in the synthesis, characteristics and ammonia sensing behavior of process able polyaniline. Thin Solid Films 517:3770–3775CrossRefGoogle Scholar
  46. 46.
    Pandule SS, Patil MR, Keri RS (2017) Properties and ammonia gas sensing applications of different inorganic acid-doped poly (2-chloroanilines). Polym Bull 75:4469. CrossRefGoogle Scholar
  47. 47.
    Guo C, Kondo Y, Takaia C, Fujia M (2016) Piezo resistivities of vapor-grown carbon fiber/silicone foams for tactile sensor applications. Polym Int 66:418. CrossRefGoogle Scholar
  48. 48.
    Hong L, Li Y, Yang M (2010) Fabrication and ammonia gas sensing of palladium/polypyrrole nanocomposite. Sens Actuators B Chem 145:25–31CrossRefGoogle Scholar
  49. 49.
    Wu Z, Chen X, Zhu S, Zhou Z, Yao Y, Quan W, Liu B (2013) Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite. Sens Actuators B Chem 178:485–493CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Ness Wadia Nanomaterial Research Centre, Department of Chemistry, Nowrosjee Wadia CollegeSavitribai Phule Pune UniversityPuneIndia
  2. 2.Department of ChemistrySavitribai Phule Pune UniversityPuneIndia

Personalised recommendations