Pluronic F127 gels fabricated by thiol–ene click chemistry: preparation, gelation dynamics, swelling behaviors and mechanical properties

  • Bo YanEmail author
  • Hongwei Zhou
  • Jialiang Lai
  • Zhiwen Wang
  • Chunyan Luo
  • Hanbin Liu
  • Xilang Jin
  • Aijie Ma
  • Weixing Chen
Original Paper


Click chemistry is an effective tool to fabricate three-dimensional gel network in an accurate way. In this work, Pluronic F127 gels are prepared by thiol–ene click chemistry, utilizing double-bond end-capped Pluronic F127 (F127DA) and pentaerythritol tetras-mercaptopropionate (PETMP) as the starting materials and triethylamine as the catalyst. Both the mass fraction of F127DA and the initial concentration of PETMP have effects on the properties of the resulting F127 gels. The optimized F127 gel prepared under a F127DA mass fraction of 15 wt% and a PETMP concentration of 17.62 mmol/L exhibits the highest swelling ratio (10) and has the largest elongation at break (194%). When the F127DA mass fraction and PETMP concentration are fixed at 15 wt% and 48.26 mmol/L, respectively, the resulting F127 gel has a high stress of 0.25 MPa. The present example has presented a method to fabricate three-dimensional gel network in a controlled way.


Click chemistry Thiol–ene Gel Gelation dynamics Mechanical property 



This work was supported by the National Natural Science Foundation of China (Nos. 51603164, 21807085), the Natural Science Basic Research Plan in Shaanxi Province of China (Nos. 2016JQ5036, 2017ZDJC-22), the Young Talent Fund of University Association for Science and Technology in Shaanxi, China (20170706) and the Start-up Funding for Scientific Research in Xi’an Technological University (No. 0853-302020350).


  1. 1.
    Zhao F, Shi Y, Pan L, Yu G (2017) Multifunctional nanostructured conductive polymer gels: synthesis, properties, and applications. Acc Chem Res 50:1734–1743CrossRefGoogle Scholar
  2. 2.
    Sun JY, Zhao XH, Illeperuma WRK, Chaudhuri O, Oh KH, Mooney DJ, Vlassak JJ, Suo ZG (2012) Highly stretchable and tough hydrogels. Nature 489:133–136CrossRefGoogle Scholar
  3. 3.
    Kopecek J (2002) Polymer chemistry: swell gels. Nature 417:388–391CrossRefGoogle Scholar
  4. 4.
    Kim J, Yoon J, Hayward RC (2010) Dynamic display of biomolecular patterns through an elastic creasing instability of stimuli-responsive hydrogels. Nat Mater 9:159–164CrossRefGoogle Scholar
  5. 5.
    Ehrbar M, Rizzi SC, Schoenmakers RG, San Miguel B, Hubbell JA, Weber FE, Lutolf MP (2007) Biomolecular hydrogels formed and degraded via site-specific enzymatic reactions. Biomacromolecules 8:3000–3007CrossRefGoogle Scholar
  6. 6.
    Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polymer 49:1993–2007CrossRefGoogle Scholar
  7. 7.
    Cuthbert J, Beziau A, Gottlieb E, Fu L, Yuan R, Balazs AC, Kowalewski T, Matyjaszewski K (2018) Transformable materials: structurally tailored and engineered macromolecular (STEM) gels by controlled radical polymerization. Macromolecules 51:3808–3817CrossRefGoogle Scholar
  8. 8.
    Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:4337–4351CrossRefGoogle Scholar
  9. 9.
    Uygun M, Kahveci MU, Odaci D, Timur S, Yagci Y (2009) Antibacterial acrylamide hydrogels containing silver nanoparticles by simultaneous photoinduced free radical polymerization and electron transfer processes. Macromol Chem Phys 210:1867–1875CrossRefGoogle Scholar
  10. 10.
    Haraguchi K, Li H-J, Matsuda K, Takehisa T, Elliott E (2005) Mechanism of forming organic/inorganic network structures during in-situ free-radical polymerization in PNIPA–clay nanocomposite hydrogels. Macromolecules 38:3482–3490CrossRefGoogle Scholar
  11. 11.
    Xu Y, Xu H, Jiang X, Yin J (2014) Versatile functionalization of the micropatterned hydrogel of hyperbranched poly(ether amine) based on “thiol–yne” chemistry. Adv Funct Mater 24:1679–1686CrossRefGoogle Scholar
  12. 12.
    Wang Q, Hawker C (2011) Toward a few good reactions: celebrating click chemistry’s first decade. Chem Asian J6:2568–2569CrossRefGoogle Scholar
  13. 13.
    Moses JE, Moorhouse AD (2007) The growing applications of click chemistry. Chem Soc Rev 36:1249–1262CrossRefGoogle Scholar
  14. 14.
    Campos LM, Meinel I, Guino RG, Schierhorn M, Gupta N, Stucky GD, Hawker CJ (2008) Highly versatile and robust materials for soft imprint lithography based on thiol–ene click chemistry. Adv Mater 20:3728–3733CrossRefGoogle Scholar
  15. 15.
    Lowe AB, Hoyle CE, Bowman CN (2010) Thiol–yne click chemistry: a powerful and versatile methodology for materials synthesis. J Mater Chem 20:4745–4750CrossRefGoogle Scholar
  16. 16.
    Binder WH, Sachsenhofer R (2007) ′Click′ chemistry in polymer and materials science. Macromol Rapid Commun 28:15–54CrossRefGoogle Scholar
  17. 17.
    Hoyle CE, Bowman CN (2010) Thiol–ene click chemistry. Angew Chem Int Ed 49:1540–1573CrossRefGoogle Scholar
  18. 18.
    Lin CC, Raza A, Shih H (2011) PEG hydrogels formed by thiol–ene photo-click chemistry and their effect on the formation and recovery of insulin-secreting cell spheroids. Biomaterials 32:9685–9695CrossRefGoogle Scholar
  19. 19.
    Aimetti AA, Machen AJ, Anseth KS (2009) Poly(ethylene glycol) hydrogels formed by thiol–ene photopolymerization for enzyme-responsive protein delivery. Biomaterials 30:6048–6054CrossRefGoogle Scholar
  20. 20.
    Zhou Y, Ma G, Shi S, Yang D, Nie J (2011) Photopolymerized water-soluble chitosan-based hydrogel as potential use in tissue engineering. Int J Biol Macromol 48:408–413CrossRefGoogle Scholar
  21. 21.
    Sun YN, Gao GR, Du GL, Cheng YJ, Fu J (2014) Super tough, ultrastretchable, and thermoresponsive hydrogels with functionalized triblock copolymer micelles as macro-cross-linkers. Acs Macro Lett 3:496–500CrossRefGoogle Scholar
  22. 22.
    Zhou H, Yan B, Li J, Liu H, Wang Q, Ding X, Jin X, Ma A, Chen W, Yang J, Luo C, Zhang G, Zhao W (2018) Poly(NIPAAm-co-Ru(bpy)32+) hydrogels crosslinked by double-bond end-capped Pluronic F127: preparation, properties and coupling with the BZ reaction. J Mater Sci 53:5467–5476CrossRefGoogle Scholar
  23. 23.
    Zhou H, Zhang M, Cao J, Yan B, Yang W, Jin X, Ma A, Chen W, Ding X, Zhang G (2017) Highly flexible, tough, and self-healable hydrogels enabled by dual cross-linking of triblock copolymer micelles and ionic interactions. Macromol Mater Eng 302:1600352CrossRefGoogle Scholar
  24. 24.
    Zhou H, Jin X, Yan B, Li X, Yang W, Ma A, Zhang X, Li P, Ding X, Chen W (2017) Mechanically robust, tough, and self-recoverable hydrogels with molecularly engineered fully flexible crosslinking structure. Macromol Mater Eng 302:1700085CrossRefGoogle Scholar
  25. 25.
    Zhou H, Yang Y, Xu G, Chen W, Zhang W, Wang Q, Zheng Z, Ding X (2015) Ru(II)(tpy)2-functionalized hydrogels: synthesis, reversible responsiveness, and coupling with the belousov-zhabotinsky reaction. J Polym Sci Part A Polym Chem 53:2214–2222CrossRefGoogle Scholar
  26. 26.
    Wang Z, Zhou H, Chen W, Li Q, Yan B, Jin X (2018) Dually synergetic network hydrogels with integrated mechanical stretchability, thermal responsiveness and electrical conductivity for strain sensors and temperature alertor. ACS Appl Mater Interfaces 10(16):14045–14054CrossRefGoogle Scholar
  27. 27.
    Wang Z, Zhou H, Lai J, Yan B, Liu H, Chen W (2018) Extremely stretchable and electrically conductive hydrogels with dually synergistic networks for wearable strain sensors. J Mater Chem C 2018(6):9200–9207Google Scholar
  28. 28.
    Lai J, Zhou H, Wang M, Chen Y, Jin Z, Li S, Yang J, Jin X, Liu H, Zhao W (2018) Recyclable, stretchable and conductive double network hydrogels towards flexible strain sensors. J Mater Chem C 6:13316–13324CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Bo Yan
    • 1
    Email author
  • Hongwei Zhou
    • 1
  • Jialiang Lai
    • 1
  • Zhiwen Wang
    • 1
  • Chunyan Luo
    • 1
  • Hanbin Liu
    • 2
  • Xilang Jin
    • 1
  • Aijie Ma
    • 1
  • Weixing Chen
    • 1
  1. 1.School of Materials and Chemical EngineeringXi’an Technological UniversityXi’anPeople’s Republic of China
  2. 2.School of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi’anPeople’s Republic of China

Personalised recommendations