The effects of anionic surfactant on the mechanical, thermal, structure and morphological properties of epoxy–MWCNT composites

  • Md. Gulam Sumdani
  • Muhammad Remanul IslamEmail author
  • Ahmad Naim Ahmad Yahaya
Original Paper


An anionic surface-active agent, linear alkyl benzene sulfonic acid (LABSA), was successfully utilized (2.5, 5.0, 7.5 and 10.0 wt%) to disperse multiwall carbon nanotubes (MWCNTs) in epoxy in order to enhance the properties of nanocomposites. The dispersion of the MWCNTs in the polymer matrix was observed using scanning electron microscopy. In addition, the mechanical properties of the composites such as tensile strength, flexural strength and impact strength were tested. Moreover, the thermal properties of the composites were examined using thermogravimetric analyzer and differential scanning calorimetry. The functional groups and crystalline properties of the nanocomposites were analyzed using Fourier transform infrared spectroscopy and X-ray diffraction, respectively. All the properties were improved significantly by the surface treatment of the MWCNTs using LABSA. The presence of LABSA prohibited the MWCNTs to re-agglomerate and form a big cluster which may lead to poor dispersion in the epoxy. It was found that the highest mechanical properties (tensile strength of 40.4 MPa and flexural strength of 23 MPa) of the nanocomposite were obtained using 5 wt% of LABSA.


Surfactant Linear alkyl benzene sulfonic acid (LABSA) Nanocomposites Dispersion Epoxy Multiwall carbon nanotubes (MWCNTs) 



Funding was provided by Universiti Kuala Lumpur (Grant No. str17033).


  1. 1.
    Hao Z, Li L, Liao X, Sheng X, Zhang Y (2017) Preparation and toughening performance investigation of epoxy resins containing carbon nanotubes modified with hyperbranched polyester. Polym Bull 75:1013–1026. CrossRefGoogle Scholar
  2. 2.
    He Y, Zhang L, Chen G, Li X, Yao D, Lee JH, Zhang Y (2014) Surface functionalized carbon nanotubes and its effects on the mechanical properties of epoxy based composites at cryogenic temperature. Polym Bull 71:2465–2485. CrossRefGoogle Scholar
  3. 3.
    Gupta P, Bajpai M (2011) Development of siliconized epoxy resins and their application as anticorrosive coatings. Adv Chem Eng Sci 1:133–139. CrossRefGoogle Scholar
  4. 4.
    Sun Y, Liu W, Ma Z (2013) Synthesis of epoxy-terminated fluoropolymer via ATRP and the properties of epoxy thermosets modified with it. Polym Bull 70:1531–1542. CrossRefGoogle Scholar
  5. 5.
    Sprenger S (2013) Epoxy resins modified with elastomers and surface-modified silica nanoparticles. Polymer 54:4790–4797. CrossRefGoogle Scholar
  6. 6.
    Saba N, Safwan A, Sanyang ML, Mohammad F, Pervaiz M, Jawaid M, Alothman OY, Sain M (2017) Thermal and dynamic mechanical properties of cellulose nanofibers reinforced epoxy composites. Int J Biol Macromol 102:822–828. CrossRefGoogle Scholar
  7. 7.
    Salasinska K, Barczewski M, Górny R, Kloziński A (2018) Evaluation of highly filled epoxy composites modified with walnut shell waste filler. Polym Bull 75:2511–2528. CrossRefGoogle Scholar
  8. 8.
    Suriati G, Mariatti M, Azizan A (2012) Silver-filled epoxy composites: effect of hybrid and silane treatment on thermal properties. Polym Bull 70:311–323. CrossRefGoogle Scholar
  9. 9.
    Wan Dalina WAD, Mariatti M, Tan SH (2012) Multi-walled carbon nanotubes buckypaper/epoxy composites: effect of loading and pressure on tensile and electrical properties. Polym Bull 75:1–17. Google Scholar
  10. 10.
    Castrillo PD, Olmos D, Sue HJ, González-Benito J (2015) Mechanical characterization and fractographic study of epoxy–kaolin polymer nanocomposites. Compos Struct 133:70–76. CrossRefGoogle Scholar
  11. 11.
    Islam MR, Beg DH, Jamari SS (2015) The effects of five different types of acid anhydrides and incorporation of montmorillonite nanoclays on thermosetting resins. Polym Bull 72:3007–3030. CrossRefGoogle Scholar
  12. 12.
    Dalina WAD, Mariatti M, Tan SH (2018) Effect of black ink loading on the properties of multi-walled carbon nanotubes/glass fibre/epoxy laminated hybrid composites. Polym Bull 75:3357–3375. CrossRefGoogle Scholar
  13. 13.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58. CrossRefGoogle Scholar
  14. 14.
    Liao YH, Tondin OM, Liang Z, Zhang C, Wang B (2004) Investigation of the dispersion process of SWNTs/SC-15 epoxy resin nanocomposites. Adv Mater Sci A 385:175–181. CrossRefGoogle Scholar
  15. 15.
    Allaoui A, Bai S, Cheng HM, Bai JB (2002) Mechanical and electrical properties of a MWNT/epoxy composite. Compos Sci Technol 62:1993–1998. CrossRefGoogle Scholar
  16. 16.
    Yao H, Hawkins SA, Sue H-J (2016) Preparation of epoxy nanocomposites containing well-dispersed graphene nanosheets. Compos Sci Technol 146:161–168. CrossRefGoogle Scholar
  17. 17.
    Wang FX, Liang WY, Wang ZQ, Yang B, He L, Zhang K (2018) Preparation and property investigation of multi-walled carbon nanotube (MWCNT)/epoxy composite films as high-performance electric heating (resistive heating) element. eXPRESS Polym Lett 12:285–295. CrossRefGoogle Scholar
  18. 18.
    Li Z, Gao Y, Moon K-S, Yao Y, Tannenbaum A, Wong CP (2012) Automatic quantification of filler dispersion in polymer composites. Polymer 53:1571–1580. CrossRefGoogle Scholar
  19. 19.
    Tessema A, Zhao D, Moll J, Xu S, Yang R, Li C, Kumar SK, Kidane A (2017) Effect of filler loading, geometry, dispersion and temperature on thermal conductivity of polymer nanocomposites. Polym Testing 57:101–106. CrossRefGoogle Scholar
  20. 20.
    Park S-J, Bae K-M, Seo M-K (2010) A study on rheological behavior of MWCNTs/epoxy composites. J Ind Eng Chem 16:337–339. CrossRefGoogle Scholar
  21. 21.
    Peng X, Li X, Li X (2012) Evaluation of the dispersing properties of polycarboxylate-type superplasticizers with different molecular weight in cement systems. J Dispers Sci Technol 34:1265–1272. CrossRefGoogle Scholar
  22. 22.
    Korayem AH, Tourani N, Zakertabrizi M, Sabziparvar AM, Duan WH (2017) A review of dispersion of nanoparticles in cementitious matrices: nanoparticle geometry perspective. Constr Build Mater 153:346–357. CrossRefGoogle Scholar
  23. 23.
    Sobolkina A, Mechtcherine V, Khavrus V, Maier D, Mende M, Ritschel M, Leonhardt A (2012) Dispersion of carbon nanotubes and its influence on the mechanical properties of the cement matrix. Cem Concr Comp 34:1104–1113. CrossRefGoogle Scholar
  24. 24.
    Liu JQ, Xiao T, Liao K, Wu P (2007) Interfacial design of carbon nanotube polymer composites: a hybrid system of noncovalent and covalent functionalization. Nanotechnology 18:165701. CrossRefGoogle Scholar
  25. 25.
    Li Y, Li R, Fu X, Wang Y, Zhong W-HZ (2018) A bio-surfactant for defect control: multifunctional gelatin coated MWCNTs for conductive epoxy nanocomposites. Compos Sci Technol 159:216–224. CrossRefGoogle Scholar
  26. 26.
    Rahmani F, Nouranian S, Mahdavi M, O’Haver JH (2017) A fundamental investigation of the surfactant-stabilized single-walled carbon nanotube/epoxy resin suspensions by molecular dynamics simulation. Mater Res Express 4:015016. CrossRefGoogle Scholar
  27. 27.
    Naik RB, Jagtap SB, Naik RS, Malvankar NG, Ratna D (2014) Effect of non-ionic surfactants on thermomechanical properties of epoxy/multiwall carbon nanotubes composites. Prog Org Coat 77:1883–1889. CrossRefGoogle Scholar
  28. 28.
    Kumar A, Ghosh PK, Yadav KL, Kumar K (2017) Thermo-mechanical and anti-corrosive properties of MWCNT/epoxy nanocomposite fabricated by innovative dispersion technique. Compos Part B 113:291–299. CrossRefGoogle Scholar
  29. 29.
    Cha J, Jin S, Shim JH, Park CS, Ryu HJ, Hong SH (2016) Functionalization of carbon nanotubes for fabrication of CNT/epoxy nanocomposites. Mater Des 95:1–8. CrossRefGoogle Scholar
  30. 30.
    Gantayat S, Rout D, Swain SK (2017) Mechanical properties of functionalized multiwalled carbon nanotube/epoxy nanocomposites. Mater Today Proc 4:4061–4064. CrossRefGoogle Scholar
  31. 31.
    Gupta A, Kumar A, Patnaik A, Biswas S (2012) Effect of filler content and alkalization on mechanical and erosion wear behavior of CBPD filled bamboo fiber composites. J Surf Eng Mater Adv Technol 2:149–157. Google Scholar
  32. 32.
    Voo R, Mariatti M, Sim LC (2012) Flexibility improvement of epoxy nanocomposites thin films using various flexibilizing additives. Compos Part B 43:3037–3043. CrossRefGoogle Scholar
  33. 33.
    Christesen JD (2011) Mechanical properties of solvent cast graphene-polymer nanocomposites. Dissertation. College of William and MaryGoogle Scholar
  34. 34.
    Rezazadeh V, Pourhossaini MR, Salimi A (2017) Effect of amine-functionalized dispersant on cure and electrical properties of carbon nanotube/epoxy nanocomposites. Prog Org Coat 11:389–394. CrossRefGoogle Scholar
  35. 35.
    Kumar A, Kumar K, Ghosh PK, Yadav KL (2017) MWCNT/TiO2 hybrid nano filler toward high-performance epoxy composite. Ultrason Sonochem 41:37–46. CrossRefGoogle Scholar
  36. 36.
    Cebeci H, Villoria RG, Hart AJ, Wardle BL (2009) Multifunctional properties of high volume fraction aligned carbon nanotube polymer composites with controlled morphology. Compos Sci Technol 56:2649–2656. CrossRefGoogle Scholar
  37. 37.
    Loos MR, Coelho LAF, Pezzin SH, Amico SC (2008) Effect of carbon nanotubes addition on the mechanical and thermal properties of epoxy matrices. Mat Res 11:347–352. CrossRefGoogle Scholar
  38. 38.
    T-t Wong, K-t Lau, W-y Tam, Etches JA, Kim J-K, Wu Y (2016) Effects of silane surfactant on Nano-ZnO and rheology properties of nano-ZnO/epoxy on the UV absorbability of nano-ZnO/epoxy/micron-HGF composite. Compos Part B 90:378–385. CrossRefGoogle Scholar
  39. 39.
    Zakaria MR, Akil H, Kudus HA, Kadarman AH (2015) Improving flexural and dielectric properties of MWCNT/epoxy nanocomposites by introducing advanced hybrid filler system. Compos Struct 132:50–64. CrossRefGoogle Scholar
  40. 40.
    Zakaria MR, Kudus HA, Akil H, Thirmizir ZM (2017) Comparative study of graphene nanoparticle and multiwall carbon nanotube filled epoxy nanocomposites based on mechanical, thermal and dielectric properties. Compos Part B 119:57–66. CrossRefGoogle Scholar
  41. 41.
    Theodore M, Hosur M, Thomas J, Jeelani S (2011) Influence of functionalization on properties of MWCNT–epoxy nanocomposites. Mater Sci Eng, A 528:1192–1200. CrossRefGoogle Scholar
  42. 42.
    Dalina WAD, Tan SH, Mariatti M (2016) Properties of fiberglass/MWCNT buckypaper/epoxy laminated composites. Procedia Chem 19:935–942. CrossRefGoogle Scholar
  43. 43.
    Rahman MM, Zainuddin S, Hosur MV, Malone JE, Salam MBA, Kumar A, Jeelani S (2012) Improvements in mechanical and thermo-mechanical properties of e-glass/epoxy composites using amino functionalized MWCNTs. Compos Struct 94:2397–2406. CrossRefGoogle Scholar
  44. 44.
    Razali N, Sultan MTH, Mustapha F, Yidris N, Ishak MR (2014) Impact damage on composite structures—a review. Int J Eng Sci 3:08–20Google Scholar
  45. 45.
    Ambrozˇicˇ R, Šebenik U, Krajnc M (2016) Epoxy emulsions stabilized with reactive bio-benzoxazine surfactant from epoxidized cardanol for coatings. Eur Polym J 81:138–151. CrossRefGoogle Scholar
  46. 46.
    Srivastava K, Rathore AK, Srivastava D (2017) Studies on the structural changes during curing of epoxy and its blend with CTBN. Spectrochim Acta Part A Mol Biomol Spectrosc 188:99–105. CrossRefGoogle Scholar
  47. 47.
    Colombani J, Chauvet E, Amat S, Dupuy N, Gigmes D (2017) A FTIR/chemometrics approach to characterize the gamma radiation effects on iodine/epoxy-paint interactions in Nuclear Power Plants. Anal Chim Acta 960:53–62. CrossRefGoogle Scholar
  48. 48.
    Vijayan P, Tanvir A, El-Gawady YH, Al-Maadeed M (2017) Cellulose nanofibers to assist the release of healing agents in epoxy coatings. Prog Org Coat 112:127–132. CrossRefGoogle Scholar
  49. 49.
    Begovi N, Blagojevic VA, Ostoji BS, Minić DM (2014) Thermally induced structural transformations of a series of palladium(II) complexes with N-heteroaromatic bidentate hydrazone ligands. Thermochim Acta 592:23–30. CrossRefGoogle Scholar
  50. 50.
    Mina MF, Beg MDH, Islam MR, Nizam A, Alam AKMM, Yunus RM (2014) Structures and properties of injection-molded biodegradable poly(lactic acid) nanocomposites prepared with untreated and treated multiwalled carbon nanotubes. Polym Eng Sci 54:317–326. CrossRefGoogle Scholar
  51. 51.
    Islam MR, Beg DH, Jamari SS (2015) Characterization of multiwalled carbon nanotube filled, palm-oil-based polyalkyds: effects of loading and in situ reaction. J Appl Polym Sci 133:42934. Google Scholar
  52. 52.
    Bakhtiar NSA, Kuang YC, Saleh SS, Akil HM (2016) Preparation and characterization of treated MWCNT-muscovite filled epoxy nanocomposites. Procedia Chem 19:283–289. CrossRefGoogle Scholar
  53. 53.
    Nazarenko OB, Melnikova TV, Visakh PM (2016) Thermal and mechanical characteristics of polymer composites based on epoxy resin, aluminium nanopowders and boric acid. J Phys: Conf Ser 671:012040. Google Scholar
  54. 54.
    Norhakim N, Ahmad SHJ, Chia CH, Huang NM (2014) Mechanical and thermal properties of graphene oxide filled epoxy nanocomposites. Sains Malays 43:603–609Google Scholar
  55. 55.
    Shen J, Huang W, Wu L, Hu Y, Ye M (2007) The reinforcement role of different amino-functionalized multi-walled carbon nanotubes in epoxy nanocomposites. Compos Sci Technol 67:3041–3050. CrossRefGoogle Scholar
  56. 56.
    Li J, Wu Z, Huang C, Liu H, Huang R, Li L (2014) Mechanical properties of cyanate ester/epoxy nanocomposites modified with plasma functionalized MWCNTs. Compos Sci Technol 90:166–173. CrossRefGoogle Scholar
  57. 57.
    Kim MT, Rhee KY, Lee JH, Hui D, Lau AKT (2011) Property enhancement of a carbon fiber/epoxy composite by using carbon nanotubes. Compos Part B 42(2011):1257–1261. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Malaysian Institute of Chemical and Bioengineering Technology (MICET)Universiti Kuala LumpurAlor GajahMalaysia

Personalised recommendations