Advertisement

Clean and dry route of synthesis of C60/polyvinylpyrrolidone composite using supercritical carbon dioxide

  • Navdeep BhullarEmail author
  • Archna Sharma
Original Paper
  • 15 Downloads

Abstract

In the present investigation, we have studied polymerization of (a) vinylpyrrolidone (VP) and (b) VP with C60 molecule applying various supercritical conditions with 2,2-azobisisobutyronitrile (AIBN) as a catalyst. Products hence obtained are polyvinylpyrrolidone (PVP) and fullerene-polyvinylpyrrolidone (C60/PVP) polymers. With polymerization reaction, the yield of corresponding C60–PVP polymers was significantly affected under applied concentrations of AIBN (304.5–1218.0 × 10−3 mol/dL) supercritical pressure (1200–1800 psi), temperature (C60 90 ± 1°) and time (3–6 h). The concentration of VP ranged 7.04–12.59 × 10−3 mol/dL. The samples of the synthesized C60/PVP polymer with lowest (24.8%) and highest (45.0%) yields were characterized using UV–Vis, FT-IR, 1H NMR, laser-induced breakdown spectra, scanning electron microscopy and simultaneous TG–DTA–DSC. The morphology of the C60/PVP polymers was confirmed by scanning electron micrographs which indicates the existence of separated C60 phases with heterogeneous morphology in corresponding C60/PVP polymers in all the cases. Simultaneous TG–DTA–DSC revealed enhanced thermal stability of C60/PVP.

Keywords

Supercritical carbon dioxide Fullerene TEM Thermal analysis TG–DTA–DSC LIBS PVP/C60–PVP polymers 

Notes

Acknowledgement

The author wishes to thank Prof.M..G.H. Zaidi for his support.

References

  1. 1.
    Ravi P, Dai S, Wang C, Tam KC (2007) Fullerene containing polymers: a review on their synthesis and supramolecular behavior in solution. J Nanosci Nanotechnol 7(4–5):1176–1196CrossRefGoogle Scholar
  2. 2.
    Wang C, Guo Z, Fu S, Wu W, Zhu D (2004) Polymers containing fullerene or carbon nanotube structures. Prog Polym Sci 29:1079–1141CrossRefGoogle Scholar
  3. 3.
    Geckeler KE, Samal S (2004) Syntheses and properties of macromolecular fullerenes—a review. Russ J Appl Chem 78(1):130–136Google Scholar
  4. 4.
    Mountrichas G, Pispas S, Kamitsos EI, Xenogiannopoulou E, Couris S (2005) Stable aqueous dispersions of C60 fullerene by the use of a block copolymer. J Phys Conf Ser 10:163–166CrossRefGoogle Scholar
  5. 5.
    Dominik E, Robert S (2014) Nanocarbon-inorganic hybrids: next generation composites for sustainable energy applications. Walter de Gruyter GmbH & Co KG Publication, BerlinGoogle Scholar
  6. 6.
    Jiaxing S, Xiao Z, Long B, Zhiguo L, Zhao J, Jiyou G (2018) Effect of shell growth on the morphology of polyvinyl acetate/polystyrene inverted core–shell latex fabricated by acrylonitrile grafting. Materials 11:2482CrossRefGoogle Scholar
  7. 7.
    Ozkazanc H, Ozkaz E (2017) Novel nanocomposites of polypyrrole doped with fullerene C60. J Macromol Sci Part B Phys 56(2):83–96CrossRefGoogle Scholar
  8. 8.
    Chen JG, Liu X, Liu ZW, Hu DD, Congjie Z, Xue D, Xiao J, Liu ZT (2012) Intermolecular-interaction-dominated solvation behaviors of liquid monomers and polymers in gaseous and supercritical carbon dioxide. Macromolecules 45(11):4907–4919CrossRefGoogle Scholar
  9. 9.
    Gabriela A, Gabrielle CC, Jacques D, Michel NJ, Bogdan CS, Jack C (2005) Multifunctional, water-soluble, C60-pendant maleic anhydride copolymer. J Polym Sci Part A Polym Chem 43:5814–5822CrossRefGoogle Scholar
  10. 10.
    Barros AA, Silva JM, Craveiro R, Paiva A, Reis RL et al (2017) Green solvents for enhanced impregnation processes in biomedicine. Curr Opin Green Sustain Chem 5:82CrossRefGoogle Scholar
  11. 11.
    Skoog D, Holler FJ, Crouch SR (2017) Principles of instrumental analysis. Cengage learning. Publishers and Distributers, New YorkGoogle Scholar
  12. 12.
    Hemalatha P, Veeraiah MK, Kumar SP, Madegowda NM, Manju M (2014) Reactivity ratios of N-vinylpyrrolidone-acrylic acid copolymer. Am J Polym Sci 4(1):16–23Google Scholar
  13. 13.
    Laserna J, Vadillo JM, Purohit P (2018) Laser-induced breakdown spectroscopy (LIBS): fast, effective, and agile leading edge analytical technology. Appl Spectrosc 72(S1):35–50Google Scholar
  14. 14.
    Gombos Z, Nagy V, Vas LM, Gaál J (2005) Investigation of pore size and resin absorbency in chopped strands. Period Polytech Ser Mech Eng 49(2):131–148Google Scholar
  15. 15.
    Cooper AI, Wood CD, Holmes AB (2000) Synthesis of well-defined macroporous polymer monoliths by sol–gel polymerization in supercritical CO2. Ind Eng Chem Res 39:4741–4744CrossRefGoogle Scholar
  16. 16.
    Zaidi MGH, Sharma D, Bhullar N, Agarwal V, Alam S, Rai AK, Pant RP (2010) Synthesis of polyvinyl pyridine ferrite nanocomposites in supercritical CO2. J Nanostruct Polym Nanocompd 6(4):103–109Google Scholar
  17. 17.
    Bhullar N, Zaidi MGH (2007) Synthesis of polyvinyl pyridine-C60 conjugate in supercritical carbon dioxide. Int J Nanosci Nanotechnol 3(1):63–68Google Scholar
  18. 18.
    Zhang WC, Zhou P, Du FS, Li ZC, Li FM (2001) The morphology investigation of hammer-like C60 conjugated polystyrene in solution. Acta Polym Sin 4:557–560Google Scholar
  19. 19.
    Kuo C, Kumar J, Tripathy SK, Long Y, Chiang J (2001) Synthesis and properties of [60] fullerene-polyvinyl pyridine conjugates for photovoltaic devices. Macromol Sci Pure Appl Chem A 38(12):1481–1498CrossRefGoogle Scholar
  20. 20.
    Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube-polymer composites: chemistry, processing, mechanical and electrical properties. Progress Polym Sci 35(3):357–401CrossRefGoogle Scholar
  21. 21.
    Torosyan SA, Biglova YN, Mikheev VV, Gimalova FA, Mustafin AG, Miftakhov MS (2014) New monomers for fullerene-containing polymers. Russ J Organ Chem 2(50):179–182CrossRefGoogle Scholar
  22. 22.
    Chen Y, Huang Z, Kong RCS, Chen S, Shao Q, Yan X, Zhao F, Fu D (2000) Synthesis and characterization of soluble C60-chemically modified poly(p-bromostyrene). China J Polym Sci Part A Polym Chem 34(16):3297–3302CrossRefGoogle Scholar
  23. 23.
    Mark JE (2007) Physical properties of polymers handbook. Springer, New York (ISBN 978-0-387-31235-4)CrossRefGoogle Scholar
  24. 24.
    Wang C, Tao Z, Yang W, Fu S (2001) Synthesis and photoconductivity study of C60-containing styrene/acrylamide copolymers. Macromol Rapid Commun 21:98–103CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Model Institute of Engineering and TechnologyJammuIndia
  2. 2.Department of ChemistryGovind Vallabhpant University for Agriculture & TechnologyPant NagarIndia

Personalised recommendations