Advertisement

Influence of Al2O3 particle size on properties of thermoplastic starch–TiO2–Al2O3 composites

  • Narong Chueangchayaphan
  • Kang Ai Ting
  • Mahani Yusoff
  • Wannarat ChueangchayaphanEmail author
Original Paper
  • 14 Downloads

Abstract

Thermoplastic starch (TPS), an inexpensive, renewable, widely available and biodegradable biopolymer, has been promoted as a promising alternative to synthetic polymers based on fossil resources. However, it exhibits weak mechanical properties and high moisture uptake. Reinforcing fillers have been used to improve the properties of thermoplastic starch. This work studies the effects of Al2O3 particle size on dielectric, thermal, physical, mechanical and morphological properties of thermoplastic starch–TiO2–Al2O3 composites at the fixed TPS:TiO2:Al2O3 weight ratio 97:2:1. The Al2O3 particle sizes tested were 0.05 μm, 1 μm and 5 μm. Dielectric, thermal, mechanical and morphological properties were determined. With increasing Al2O3 particle size, slight increases were observed in contact angle, hardness and thermal stability, while dielectric constant, dissipation factor and glass transition temperature decreased. However, the Al2O3 particle size did not significantly affect tensile properties. Scanning electron microscopy was used to investigate the morphology in the composites. In summary, the incorporation of TiO2 and Al2O3 in thermoplastic starch could extend its potential in flexible films, compost bags and packaging applications.

Keywords

Thermoplastic starch Particle size Titanium dioxide Aluminum oxide Cassava starch 

Notes

Acknowledgements

This research was financially supported by the Prince of Songkla University, Surat Thani campus, in 2015. The authors would like to express their gratitude to the Faculty of Earth Science, Universiti Malaysia Kelantan, and the Faculty of Science and Industrial Technology, Prince of Songkla University, Surat Thani campus. The assistance with manuscript preparation by Assoc. Prof. Dr. Seppo Karrila is also sincerely appreciated.

References

  1. 1.
    Bertolini AC (2010) Starches: characterization, properties, and applications. CRC Press, Florida, p 6Google Scholar
  2. 2.
    Zhang S, Lin Z, Jiang G, Wang J, Wang DY (2018) Construction of chelation structure between Ca2+ and starch via reactive extrusion for improving the performances of thermoplastic starch. Compos Sci Technol 159:59–69CrossRefGoogle Scholar
  3. 3.
    Balakrishnan P, Sreekala MS, Kunaver M, Huskić M, Thomas S (2017) Morphology, transport characteristics and viscoelastic polymer chain confinement in nanocomposites based on thermoplastic potato starch and cellulose nanofibers from pineapple leaf. Carbohydr Polym 169:176–188CrossRefGoogle Scholar
  4. 4.
    Jumaidin R, Sapuan SM, Jawaid M, Ishak MR, Sahari J (2017) Effect of seaweed on mechanical, thermal, and biodegradation properties of thermoplastic sugar palm starch/agar composites. Int J Biol Macromol 99:265–273CrossRefGoogle Scholar
  5. 5.
    Lendvai L, Apostolov A, Kocsis JK (2017) Characterization of layered silicate-reinforced blends of thermoplastic starch (TPS) and poly(butylene adipate-co-terephthalate). Carbohydr Polym 173:566–572CrossRefGoogle Scholar
  6. 6.
    Pardo IM, Shanks RA, Adhikari B, Adhikari R (2017) Thermoplastic starch-nanohybrid films with polyhedral oligomeric silsesquioxane. Carbohydr Polym 173:170–177CrossRefGoogle Scholar
  7. 7.
    Yang J, Tang K, Qin G, Chen Y, Peng L, Wan X, Xiao H, Xia Q (2017) Hydrogen bonding energy determined by molecular dynamics simulation and correlation to properties of thermoplastic starch films. Carbohydr Polym 166:256–263CrossRefGoogle Scholar
  8. 8.
    Bergel BF, Luz LM, Santana RMC (2017) Comparative study of the influence of chitosan as coating of thermoplastic starch foam from potato, cassava and corn starch. Prog Org Coat 106:27–32CrossRefGoogle Scholar
  9. 9.
    Prachayawarakorn J, Sangnitidej P, Boonpasith P (2010) Properties of thermoplastic rice starch composites reinforced by cotton fiber or low-density polyethylene. Carbohydr Polym 81:425–433CrossRefGoogle Scholar
  10. 10.
    Kelnar I, Kaprálková L, Brožová L, Hromádková J, Kotek J (2013) Effect of chitosan on the behaviour of the wheat B-starch nanocomposite. Ind Crops Prod 46:186–190CrossRefGoogle Scholar
  11. 11.
    Charoenkul N, Uttapap D, Pathipanawat W, Takeda Y (2011) Physicochemical characteristics of starches and flours from cassava varieties having different cooked root textures. LWT Food Sci Technol 44:1774–1781CrossRefGoogle Scholar
  12. 12.
    Zhu F (2015) Composition, structure, physicochemical properties, and modifications of cassava starch. Carbohydr Polym 122:456–480CrossRefGoogle Scholar
  13. 13.
    Tanetrungroj Y, Prachayawarakorn J (2015) Effect of starch types on properties of biodegradable polymer based on thermoplastic starch process by injection molding technique. Songklanakarin J Sci Technol 32(2):193–199Google Scholar
  14. 14.
    Teixeira EM, Róz AL, Carvalho AJF, Curvelo AAS (2007) The effect of glycerol/sugar/water and sugar/water mixtures on the plasticization of thermoplastic cassava starch. Carbohydr Polym 69:619–624CrossRefGoogle Scholar
  15. 15.
    Prachayawarakorn J, Pomdage W (2014) Effect of carrageenan on properties of biodegradable thermoplastic cassava starch/low-density polyethylene composites reinforced by cotton fibers. Mater Des 61:264–269CrossRefGoogle Scholar
  16. 16.
    Jaramillo CM, Gutiérrez TJ, Goyanes S, Bernal C, Famá L (2016) Biodegradability and plasticizing effect of yerba mate extract on cassava starch edible films. Carbohydr Polym 151:150–159CrossRefGoogle Scholar
  17. 17.
    Monteiro MKS, Oliveira VRL, Santos FKG, Neto ELB, Leite RHL, Aroucha EMM, Silva RR, Silva KNO (2018) Incorporation of bentonite clay in cassava starch films for the reduction of water vapor permeability. Food Res Int 105:637–644CrossRefGoogle Scholar
  18. 18.
    Clasen SH, Müller CMO, Parize AL, Pires ATN (2018) Synthesis and characterization of cassava starch with maleic acid derivatives by etherification reaction. Carbohydr Polym 180:348–353CrossRefGoogle Scholar
  19. 19.
    Campos A, Neto ARS, Rodrigues VB, Luchesi BR, Mattoso LHC, Marconcini JM (2018) Effect of raw and chemically treated oil palm mesocarp fibers on thermoplastic cassava starch properties. Ind Crops Prod 124:149–154CrossRefGoogle Scholar
  20. 20.
    Nasrabadi BN, Behzad T, Bagheri R (2014) Preparation and characterization of cellulose nanofiber reinforced thermoplastic starch composites. Fiber Polym 15(2):347–354CrossRefGoogle Scholar
  21. 21.
    Carvalho AJF, Job AE, Alves N, Curvelo AAS, Gandini A (2003) Thermoplastic starch/natural rubber blends. Carbohydr Polym 53:95–99CrossRefGoogle Scholar
  22. 22.
    Schlemmer D, Sales MJA, Resck IS (2009) Degradation of different polystyrene/thermoplastic starch blends buried in soil. Carbohydr Polym 75:58–62CrossRefGoogle Scholar
  23. 23.
    Ardakani KM, Nazari B (2010) Improving the mechanical properties of thermoplastic starch/poly(vinyl alcohol)/clay nanocomposites. Compos Sci Technol 70:1557–1563CrossRefGoogle Scholar
  24. 24.
    Liu Z, Dong Y, Men H, Jiang M, Tong J, Zhou J (2012) Post-crosslinking modification of thermoplastic starch/PVA blend films by using sodium hexametaphosphate. Carbohydr Polym 89:473–477CrossRefGoogle Scholar
  25. 25.
    Tian H, Yan J, Rajulu AV, Xiang A, Luo X (2017) Fabrication and properties of polyvinyl alcohol/starch blend films: effect of composition and humidity. Int J Biol Macromol 96:518–523CrossRefGoogle Scholar
  26. 26.
    Cerclé C, Sarazin P, Favis BD (2013) High performance polyethylene/thermoplastic starch blends through controlled emulsification phenomena. Carbohydr Polym 92:138–148CrossRefGoogle Scholar
  27. 27.
    Ferreira WH, Khalili RR, Figueira Junior MJM, Andrade CT (2014) Effect of organoclay on blends of individually plasticized thermoplastic starch and polypropylene. Ind Crops Prod 52:38–45CrossRefGoogle Scholar
  28. 28.
    Yang Y, Tang Z, Xiong Z, Zhe J (2015) Preparation and characterization of thermoplastic starches and their blends with poly(lactic acid). Int J Biol Macromol 77:273–279CrossRefGoogle Scholar
  29. 29.
    Akrami M, Ghasemi I, Azizi H, Karrabi M, Seyedabadi M (2016) A new approach in compatibilization of the poly(lactic acid)/thermoplastic starch (PLA/TPS) blends. Carbohydr Polym 144:254–262CrossRefGoogle Scholar
  30. 30.
    Lv S, Zhang Y, Gu J, Tan H (2018) Soil burial-induced chemical and thermal changes in starch/poly (lactic acid) composites. Int J Biol Macromol 113:338–344CrossRefGoogle Scholar
  31. 31.
    Mahieu A, Terrié C, Youssef B (2015) Thermoplastic starch films and thermoplastic starch/polycaprolactone blends with oxygen-scavenging properties: influence of water content. Ind Crops Prod 72:192–199CrossRefGoogle Scholar
  32. 32.
    Mendes JF, Paschoalin RT, Carmona VB, Neto ARS, Marques ACP, Marconcini JM, Mattoso LHC, Medeiros ES, Oliveira JE (2016) Biodegradable polymer blends based on corn starch and thermoplastic chitosan processed by extrusion. Carbohydr Polym 137:452–458CrossRefGoogle Scholar
  33. 33.
    Ren L, Yan X, Zhou J, Tong J, Su X (2017) Influence of chitosan concentration on mechanical and barrier properties of corn starch/chitosan films. Int J Biol Macromol 105:1636–1643CrossRefGoogle Scholar
  34. 34.
    Marinho VAD, Pereira CAB, Vitorino MBC, Silva AS, Carvalho LH, Candedo EL (2017) Degradation and recovery in poly(butylene adipate-co-terephthalate)/thermoplastic starch blends. Polym Test 58:166–172CrossRefGoogle Scholar
  35. 35.
    Xu P, Zeng Q, Cao Y, Ma P, Dong W, Chen M (2017) Interfacial modification on polyhydroxyalkanoates/starch blend by grafting in-situ. Carbohydr Polym 174:716–722CrossRefGoogle Scholar
  36. 36.
    Martins IMG, Magina SP, Oliveira L, Freire CSR, Silvestre AJD, Neto CP, Gandini A (2013) New biocomposites based on thermoplastic starch and bacterial cellulose. Compos Sci Technol 69:2163–2168CrossRefGoogle Scholar
  37. 37.
    Hietala M, Mathew AP, Oksman K (2013) Bionanocomposites of thermoplastic starch and cellulose nanofibers manufactured using twin-screw extrusion. Eur Polym J 49:950–956CrossRefGoogle Scholar
  38. 38.
    González K, Retegi A, González A, Eceiza A, Gabilondo N (2015) Starch and cellulose nanocrystals together into thermoplastic starch bionanocomposites. Carbohydr Polym 117:83–90CrossRefGoogle Scholar
  39. 39.
    Karimi S, Abdulkhani A, Tahir PM, Dufresne A (2016) Effect of cellulosic fiber scale on linear and non-linear mechanical performance of starch-based composites. Int J Biol Macromol 91:1040–1044CrossRefGoogle Scholar
  40. 40.
    Ghanbari A, Tabarsa T, Ashori A, Shakeri A, Mashkour M (2018) Preparation and characterization of thermoplastic starch and cellulose nanofibers as green nanocomposites: extrusion processing. Int J Biol Macromol 112:442–447CrossRefGoogle Scholar
  41. 41.
    Fazeli M, Keley M, Biazar E (2018) Preparation and characterization of starch-based composite films reinforced by cellulose nanofibers. Int J Biol Macromol 116:272–280CrossRefGoogle Scholar
  42. 42.
    López OV, Castillo LA, García MA, Villar MA, Barbosa SE (2015) Food packaging bags based on thermoplastic corn starch reinforced with talc nanoparticles. Food Hydrocoll 43:18–24CrossRefGoogle Scholar
  43. 43.
    Dean K, Yu L, Wu DY (2007) Preparation and characterization of melt-extruded thermoplastic starch/clay nanocomposites. Compos Sci Technol 67:413–421CrossRefGoogle Scholar
  44. 44.
    Requena VHC, Rivas BL, Pérez MA, Figueroa CR, FigueroaN E, Sanfuentes EA (2017) Thermoplastic starch/clay nanocomposites loaded with essential oil constituents as packaging for strawberries—In vivo antimicrobial synergy over Botrytis cinerea. Postharvest Biol Technol 129:29–36CrossRefGoogle Scholar
  45. 45.
    Guz L, Famá L, Candal R, Goyanes S (2017) Size effect of ZnO nanorods on physicochemical properties of plasticized starch composites. Carbohydr Polym 157:1611–1619CrossRefGoogle Scholar
  46. 46.
    Oleyaei SA, Zahedi Y, Ghanbarzadeh B, Moayedi AA (2016) Modification of physicochemical and thermal properties of starch films by incorporation of TiO2 nanoparticles. Int J Biol Macromol 89:256–264CrossRefGoogle Scholar
  47. 47.
    Zhu Y, Buonocore GG, Lavorgna M, Ambrosio L (2011) Poly(lactic acid)/titanium dioxide nanocomposite films: influence of processing procedure on dispersion of titanium dioside and photocatalytic activity. Polym Compos 32(4):519–528CrossRefGoogle Scholar
  48. 48.
    Amin KAM, Panhuis M (2012) Reinforced materials based on chitosan, TiO2 and Ag composites. Polymers 4:590–599CrossRefGoogle Scholar
  49. 49.
    Khan S, Ul-Islam M, Khattak WA, Ullah MW, Park JK (2015) Bacterial cellulose-titanium dioxide nanocomposites: nanostructural characteristics, antibacterial mechanism, and biocompatibility. Cellulose 22:565–579CrossRefGoogle Scholar
  50. 50.
    Ostafińska A, Mikešová J, Krejčíková S, Nevoralová M, Šturcová A, Zhigunov A, Michálková D, Šlouf M (2017) Thermoplastic starch composites with TiO2 particles: preparation, morphology, rheology and mechanical properties. Int J Biol Macromol 101:273–282CrossRefGoogle Scholar
  51. 51.
    Chen JP, Liu T, Zhang J, Wang BB, Ying J, Liu F, Zhang XB (2014) Influence of phase and morphology on thermal conductivity of alumina particle/silicone rubber composites. Appl Phys A Mater Sci Process 117:1985–1992CrossRefGoogle Scholar
  52. 52.
    Tangboriboon N, Uttanawanit N, Longtong M, Wongpinthong P, Sirivat A, Kunanuruksapong R (2010) Electrical and electrorheological properties of alumina/natural rubber (STR XL) composites. Materials 3:656–671CrossRefGoogle Scholar
  53. 53.
    Venkatesulu B, Thomas MJ (2010) Erosion resistance of alumina-filled silicone rubber nanocomposites. IEEE Trans Dielectr Electr Insul 17(2):615–624CrossRefGoogle Scholar
  54. 54.
    Kurtycz P, Ciach T, Olszyna A, Kunicki A, Roslon M, Wilczynska JD, Nowak K, Anuszewska E (2013) Electrospun poly(l-lactic) acid/nanoalumina (PLA/Al2O3) composite fiber mats with potential biomedical application- Investigation of cytotoxicity. Fiber Polym 14(4):578–583CrossRefGoogle Scholar
  55. 55.
    Verma V, Shukla DK, Kumar V (2014) Estimation of fatique life of epoxy-alumina polymer nanocomposites. Proc Mater Sci 5:669–678CrossRefGoogle Scholar
  56. 56.
    Gandhi MR, Viswanathan N, Meenakshi S (2010) Preparation and application of alumina/chitosan biocomposite. Int J Biol Macromol 47:146–154CrossRefGoogle Scholar
  57. 57.
    Golie WM, Upadhyayula S (2017) An investigation on biosorption of nitrate from water by chitosan based organic-inorganic hybrid biocomposites. Int J Biol Macromol 97:489–502CrossRefGoogle Scholar
  58. 58.
    ASTM (2014) Proceedings of the D638-14. Standard test method for tensile properties of plastics, ASTM International, West ConshohockenGoogle Scholar
  59. 59.
    ASTM (2015) Proceedings of the D2240-15. Standard test method for rubber property—durometer hardness. ASTM International, West ConshohockenGoogle Scholar
  60. 60.
    Kumar ER, Kamzin AS, Prakash T (2015) Effect of particle size on structural, magnetic and dielectric properties of manganese substituted nickel ferrite nanoparticles. J Magn Magn Mater 378:389–396CrossRefGoogle Scholar
  61. 61.
    Motwani T, Seetharaman K, Anantheswaran RC (2007) Dielectric properties of starch slurries as influenced by starch concentration and gelatinization. Carbohydr Polym 67:73–79CrossRefGoogle Scholar
  62. 62.
    Chi QG, Dong JF, Liu GY, Chen Y, Wang X, Lei QQ (2015) Effect of particle size on the dielectric properties of 0.5Ba(Zr0.2Ti0.8)O3–0.5 (Ba0.7Ca0.8)TiO3/polyvinylidene fluoride hybrid films. Ceram Int 41(10):15116–15121CrossRefGoogle Scholar
  63. 63.
    Yoon JR, Han JW, Lee KM, Lee HY (2009) Dielectric properties of polymer-ceramic capacitors. Trans Electr Electron Mater 10(4):116–120CrossRefGoogle Scholar
  64. 64.
    Xiaofei M, Jiugao Y, Jin F (2004) Urea and formamide as a mixed plasticizer forthermoplastic starch. Polym Int 53:1780–1785CrossRefGoogle Scholar
  65. 65.
    Lopez O, Garcia MA, Villar MA, Gentili A, Rodriguez MS, Albertengo L (2014) Thermo-compression of biodegradable thermoplastic corn starch films containing chitin and chitosan. LWT Food Sci Technol 57:106–115CrossRefGoogle Scholar
  66. 66.
    Salaberria AM, Labidi J, Fernandes SCM (2014) Chitin nanocrystals and nanofibers as nano-sized fillers into thermoplastic starch-based biocomposites processed by melt-mixing. Chem Eng J 256:356–364CrossRefGoogle Scholar
  67. 67.
    Liawthanyarat N, Rimdusit S (2015) Effects of particles size of nanosilica on properties of polybenzoxazine nanocomposites. Key Eng Mater 659:394–398CrossRefGoogle Scholar
  68. 68.
    Zhang Y, Rempel C, Liu Q (2014) Thermoplastic starch processing and characteristics-A review. Crit Rev Food Sci Nutr 54(10):1353–1370CrossRefGoogle Scholar
  69. 69.
    Horstmann SW, Belz MCE, Heitmann M, Zannini E, Arendt EK (2016) Fundamental study on the impact of gluten-free starches on the quality of gluten-free model breads. Foods 5(1–12):30CrossRefGoogle Scholar
  70. 70.
    Mendoza JS, Urzola SP, Rhenals DL, Flórez JF (2018) Enzymatic modification of cassava starch (Corpoica M-Tai) around the pasting temperature. DYNA 85(204):223–230CrossRefGoogle Scholar
  71. 71.
    Schmitt H, Guidez A, Prashantha K, Soulestin J, Lacrampe MF, Krawczak P (2015) Studies on the effect of storage time and plasticizers on the structural variations in thermoplastic starch. Carbohydr Polym 115:364–372CrossRefGoogle Scholar
  72. 72.
    Radford KC (1971) The mechanical properties of an epoxy resin with a second phase dispersion. J Mater Sci 6:1286–1291CrossRefGoogle Scholar
  73. 73.
    Singh RP, Zhang M, Chan D (2002) Toughening of a brittle thermosetting polymer: effects of reinforcement particle size and volume fraction. J Mater Sci 37:781–788CrossRefGoogle Scholar
  74. 74.
    Fu SY, Feng XQ, Lauke B, Mai YW (2008) Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Compos Part B Eng 39(6):933–961CrossRefGoogle Scholar
  75. 75.
    Mohamed MA, Shaltout NA, El Miligy AA (2011) The effect of gamma irradiation and particle size of CaCO3 on the properties of HDPE/EPDM blends. Arab J Chem 4:71–77CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Science and Industrial TechnologyPrince of Songkla UniversitySurat ThaniThailand
  2. 2.Faculty of Bioengineering and TechnologyUniversiti Malaysia KelantanJeliMalaysia

Personalised recommendations