Optimization of physicochemical and dielectric features in the conductive copolymers of aniline and 2-aminophenol

  • Umesh Somaji WawareEmail author
  • A. M. S. Hamouda
  • Dipanwita MajumdarEmail author
Original Paper


The current exploration emphasizes improving the solubility and thermal characteristics of the homopolymers–polyaniline and poly-2-aminophenol via copolymerization technique with simultaneous optimization of conductivity and dielectric behavior. Poly (aniline-co-2-aminophenol) copolymers with varying monomers compositions have been synthesized using chemical oxidative copolymerization technique. The copolymers showed considerable improvement of solubility in organic solvent compared to the unsubstituted polyaniline. Morphology of these copolymers was characterized by powdered-XRD and FESEM measurements. The studies revealed improved crystallinity in the copolymers compared to poly-2-aminophenol homopolymer. All the copolymers possess porous network with different degrees of aggregated nanoparticles blended with nanoflake structures. The copolymers also exhibited appreciable thermal stability over the homopolymers inferred from DSC measurements. The variation of frequency-dependent conductivity and dielectric permittivity of these different copolymers were further investigated and correlated with grain size distribution and varying proportions of oligoaniline segments in the polymer backbone of poly-2-aminophenol.


Copolymer Aniline o-Aminophenol Dielectric study AC conductivity Physicochemical properties 



The authors are thankful to the Qatar University. Also, DM acknowledges Chandernagore College, Hooghly, WB, India, and Barasat Govt. College, Barasat, Kolkata, WB, India, for research supports.


  1. 1.
    Sherman BC, Euler WB, Force RR (1994) The modern student laboratory: polyaniline-A conducting polymer: electrochemical synthesis and electrochromic properties. J Chem Educ 71:A94CrossRefGoogle Scholar
  2. 2.
    Huang WS, Humphrey BD, MacDiarmid AG (1986) Polyaniline, a novel conducting polymer: morphology and chemistry of its oxidation and reduction in aqueous electrolytes. J Chem Soc Faraday Trans 1 82:2385–2400CrossRefGoogle Scholar
  3. 3.
    Macdiarmid AG, Chiang JC, Richter AF, Epstein AJ (1987) Polyaniline: a new concept in conducting polymers. Synth Met 18:285–290CrossRefGoogle Scholar
  4. 4.
    Tang H, Kumar P, Zhang S, Yi Z, Crescenzo GD, Santato C, Soavi F, Cicoira F (2015) Conducting polymer transistors making use of activated carbon gate electrodes. ACS Appl Mater Interfaces 7:969–973CrossRefGoogle Scholar
  5. 5.
    Zou Y, Sun LX, Xu F (2007) Biosensor based on polyaniline–Prussian blue/multi-walled carbon nanotubes hybrid composites. Biosens Bioelectron 22:2669–2674CrossRefGoogle Scholar
  6. 6.
    Kuo CT, Chiou W (1997) Field-effect transistor with polyaniline thin film as semiconductor. Synth Met 88:23–30CrossRefGoogle Scholar
  7. 7.
    Ye S, Guihua Y (2016) Designing hierarchically nanostructured conductive polymer gels for electrochemical energy storage and conversion. Chem Mater 28:2466–2477CrossRefGoogle Scholar
  8. 8.
    Green RA, Lovell NH, Wallace GG, Poole-Warren LA (2008) Conducting polymers for neural interfaces: challenges in developing an effective long-term implant. Biomaterials 29:3393–3399CrossRefGoogle Scholar
  9. 9.
    Saini P, Arora M (2012) Microwave absorption and EMI shielding behavior of nanocomposites based on intrinsically conducting polymers. Graphene Carbon Nanotub. CrossRefGoogle Scholar
  10. 10.
    Tan Shuxin, Zhai Jin, Xue Bofei, Wan Meixiang, Meng Qingbo, Li Yuliang, Jiang Lei, Zhu Daoben (2004) Property influence of polyanilines on photovoltaic behaviors of dye-sensitized solar cells. Langmuir 20(7):2934–2937CrossRefGoogle Scholar
  11. 11.
    Boeva Z, Sergeyev V (2014) Polyaniline: synthesis, properties, and application. Polym Sci Ser C. CrossRefGoogle Scholar
  12. 12.
    Huang W-S, Humphrey BD, MacDiarmid AG (1986) Polyaniline, a novel conducting polymer: morphology and chemistry of its oxidation and reduction in aqueous electrolytes. J Chem Soc, Faraday Trans 1(82):2385–2400CrossRefGoogle Scholar
  13. 13.
    Molapo KM, Ndangili PM, Ajayi RF, Mbambisa G, Mailu SM, Njomo N, Masikini M, Baker P, Iwuoha EI (2012) Electronics of conjugated polymers (I): polyaniline. Int J Electrochem Sci 7:11859–11875Google Scholar
  14. 14.
    Jousseaume V, Morsli M, Bonnet A (2000) Aging of electrical conductivity in conducting polymer films based on polyaniline. J Appl Phys 88:960CrossRefGoogle Scholar
  15. 15.
    Murat A, Okan K (2014) Comparison of anticorrosion behavior of polyaniline and poly(3,4-methylenedioxyaniline) and their titanium dioxide nanocomposites. High Perform Polym 27(6):685–693Google Scholar
  16. 16.
    Jacob T, Joung EY, Joseph DT, Jeffrey S, Yueh-Lin L (2009) Polymer acid doped polyaniline is electrochemically stable beyond pH 9. Chem Mater 21(2):280–286CrossRefGoogle Scholar
  17. 17.
    Mikhael MG, Padias AB, Hall HK (1997) N-alkylation and N-acylation of polyaniline and its effect on solubility and electrical conductivity. J Polym Sci A 35:1673CrossRefGoogle Scholar
  18. 18.
    Moon GH, Sung WB, Seung S (2002) Thermal stability study of conductive polyaniline/polyimide blend films on their conductivity and ESR measurement. Polym Adv Technol 13:320–328CrossRefGoogle Scholar
  19. 19.
    Waware US, Hamouda AMS, Hameed AS, Summers GJ (2017) Tuning the electrical properties of polyaniline by copolymerization with o-bromoaniline. Funct Mater Lett 10(4):1750039CrossRefGoogle Scholar
  20. 20.
    Zhang Y, Qin L, Li S, Jianping Z (2009) The electrocatalytic reduction and removal of arsenate by poly(aniline-co-o-aminophenol). J Electroanal Chem 636:47–52CrossRefGoogle Scholar
  21. 21.
    Xiu-Y H, Qing-Xin L, Maa Di, Zhong L, Yong K, Huai-Guo X (2015) One-step synthesis of MnO2 doped poly(aniline-co-o-aminophenol)and the capacitive behaviors of the conducting copolymer. Chin Chem Lett 26:1367–1370CrossRefGoogle Scholar
  22. 22.
    Waware US, Hamouda AMS, Hameed AS, Mohd R, Summers GJ (2017) The spectral and morphological studies of the conductive polyaniline thin film derivatives by the in situ copolymerization. J Mater Sci: Mater Electron 28:15178–15183Google Scholar
  23. 23.
    Ozkan SZ, Eremeev GP, Karpacheva TN Prudskova, Veselova EV, Bondarenko GN, Shandryuk GA (2013) Polymers of diphenylamine-2-carboxylic acid: synthesis, structure, and properties. Polym Sci Ser B 55:107CrossRefGoogle Scholar
  24. 24.
    Shaolin Mu (2004) Electrochemical copolymerization of aniline and o-aminophenol. Synth Met 143:259–268CrossRefGoogle Scholar
  25. 25.
    Anwar-ul-Haq Ali Shah, Holze Rudolf (2006) Spectroelectrochemistry of aniline-o-aminophenol copolymers. Electrochim Acta 52:1374–1382CrossRefGoogle Scholar
  26. 26.
    Yiting Xu, Dai Lizong, Chen Jiangfeng, Gal Jean-Yves, Huihuang Wu (2007) Synthesis and characterization of aniline and aniline-o-sulfonic acid copolymers. Eur Polym J 43:2072–2079CrossRefGoogle Scholar
  27. 27.
    Liu Meiling, Ye Min, Yang Qin, Zhang Youyu, Xie Qingji, Yao Shouzhuo (2006) New method for characterizing the growth and properties of polyaniline and poly(aniline-co-o-aminophenol) films with the combination of EQCM and in situ FTIR spectroelectrochemistry. Electrochim Acta 52:342–352CrossRefGoogle Scholar
  28. 28.
    Tzou K, Gregory RV (1993) A method to prepare soluble polyaniline salt solutions—in situ doping of PANI base with organic dopants in polar solvents. Synth Met 53(3):365–377CrossRefGoogle Scholar
  29. 29.
    Ameen S, Ali V, Zulfequar M, Haq MM, Husain M (2007) Electrical conductivity and dielectric properties of sulfamic acid doped polyaniline. Curr Appl Phys 7(2):215–219CrossRefGoogle Scholar
  30. 30.
    Inzelt G (2018) Conducting polymers: past, present, future. J Electrochem Sci Eng 8(1):3–37Google Scholar
  31. 31.
    Das TK, Prusty S (2012) Review on conducting polymers and their applications. Polym-Plast Technol Eng 51(14):1487–1500CrossRefGoogle Scholar
  32. 32.
    Saafan SA, El-Nimr MK, El-Ghazzawy EH (2006) Study of dielectric properties of polypyrrole prepared using two different oxidizing agents. J Appl Polym Sci 99(6):3370–3379CrossRefGoogle Scholar
  33. 33.
    Chao D, Jia X, Liu H, He L, Cui L, Wang C, Berda EB (2011) Novel electroactive poly(arylene ether sulfone) copolymers containing pendant oligoaniline groups: synthesis and properties. J Polym Sci, Part A: Polym Chem 49:1605–1614CrossRefGoogle Scholar
  34. 34.
    Singh R, Arora V, Tandon RP, Mansingh A, Chandra S (1999) Dielectric spectroscopy of doped polyaniline. Synth Met 104(2):137–144CrossRefGoogle Scholar
  35. 35.
    MacDiarmid AG, Epstein AJ (1994) The concept of secondary doping as applied to polyaniline. Synth Met 65:103–116CrossRefGoogle Scholar
  36. 36.
    Islam S, Lakshmi GBVS, Siddiqui AM, Husain M, Zulfequar M (2013) Synthesis, electrical conductivity, and dielectric behavior of polyaniline/V2O5 composites. Int J Polym Sci. CrossRefGoogle Scholar
  37. 37.
    Mezdour D (2017) Dielectric properties of polyaniline composites. Spectrosc Lett 50(4):214–219CrossRefGoogle Scholar
  38. 38.
    John H, Thomas RM, Mathew KT, Joseph R (2004) Studies on the dielectric properties of poly(o-toluidine) and poly(o-toluidine-aniline) copolymer. J Appl Polym Sci 92:592–598CrossRefGoogle Scholar
  39. 39.
    Kumar D (2000) Synthesis and characterization of poly(aniline-co-o-toluidine) copolymer. Synth Met 114(3):369–372CrossRefGoogle Scholar
  40. 40.
    Yang Y, Mu S (2008) Synthesis and high electrochemical activity of poly(aniline-co-2-amino-4-hydroxybenzenesulfonic acid). Electrochim Acta 54(2):506–512CrossRefGoogle Scholar
  41. 41.
    Zhang J, Shan D, Mu S (2007) Chemical synthesis and electric properties of the conducting copolymer of aniline and o-aminophenol. J Polym Sci, Part A: Polym Chem 45:5573–5582CrossRefGoogle Scholar
  42. 42.
    Hichem Z, Saad L, Yasmine M, Tarik HA (2015) Preparation and characterization of a new polyaniline salt with good conductivity and great solubility in dimethyl sulphoxide. J Serb Chem Soc 80(11):1435–1448CrossRefGoogle Scholar
  43. 43.
    Zhang J, Shan D, Mu S (2007) A promising copolymer of aniline and m-aminophenol: chemical preparation, novel electric properties and characterization. Polymer 48:1269–1275CrossRefGoogle Scholar
  44. 44.
    Gupta N, Kumar D, Tomar SK (2012) Thermal behaviour of chemically synthesized polyanilines/polystyrene sulphonic acid composites. Int J Mater Chem 2(2):79–85CrossRefGoogle Scholar
  45. 45.
    Kumar D, Chandra R (2001) Thermal properties of synthetic metals: polyanilines. Ind J Eng Mater Sci 8:209–214Google Scholar
  46. 46.
    Pantery S, Stevens R, Bower CR (2005) The frequency dependent permittivity and AC conductivity of random electrical networks. Ferroelectrics 319:199–208CrossRefGoogle Scholar
  47. 47.
    Vellakkat M, Archana K, Raghu S, Sharanappa C, Hundekal D (2014) Dielectric constant and transport mechanism of percolated polyaniline nanoclay composites. Ind Eng Chem Res 53:16873–16882CrossRefGoogle Scholar
  48. 48.
    Saafan SA, El-Nimr MK, El-Ghazzawy EH (2006) Study of dielectric properties of polypyrrole prepared using two different oxidizing agents. J Appl Polym Sci 99:3370CrossRefGoogle Scholar
  49. 49.
    Chutia P, Kumar A (2014) Electrical, optical and dielectric properties of HCl doped polyaniline nanorods. Phys B 436:200–207CrossRefGoogle Scholar
  50. 50.
    Bekri-Abbes I, Srasra E (2015) Electrical and dielectric properties of polyaniline and polyaniline/montmorillonite nanocomposite prepared by solid reaction using spectroscopy impedance. J Nanomater 16(1):428Google Scholar
  51. 51.
    Brebels J, Manca J, Lutsen L, Vanderzande D, Maes W (2017) High dielectric constant conjugated materials for organic photovoltaics. J Mater Chem A 5:24037–24050CrossRefGoogle Scholar
  52. 52.
    Rouis A, Davenas J, Bonnamour I, Ouada HB (2015) Studies of morphological optical and electrical properties of the MEH-PPV/azo-calix[4]arene composite layers. Phys B 474:70–76CrossRefGoogle Scholar
  53. 53.
    Ahmed K, Kanwal F, Ramay SM, Mahmood A, Atiq S, Al-Zaghayer YS (2016) High dielectric constant study of TiO2-polypyrrole composites with low contents of filler prepared by in situ polymerization. Adv Condens Matter Phys 5:2. CrossRefGoogle Scholar
  54. 54.
    Rizvi TZ, Shakoor A (2009) Electrical conductivity and dielectric properties of polypyrrole/Na+–montmorillonite (PPy/Na+–MMT) clay nanocomposites. J Phys D Appl Phys 42:095415CrossRefGoogle Scholar
  55. 55.
    Madakbaş S, Çakmakçı E, Kahraman M, Esmer K (2013) Preparation, characterisation, and dielectric properties of polypyrrole-clay composites. Chem Pap 67(8):1048–1053CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanical and Industrial Engineering, College of EngineeringQatar UniversityDohaQatar
  2. 2.Department of ChemistryChandernagore CollegeHooghlyIndia

Personalised recommendations